BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chartrel N, Alonzeau J, Alexandre D, Jeandel L, Alvear-Perez R, Leprince J, Boutin J, Vaudry H, Anouar Y, Llorens-Cortes C. The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions. Front Neuroendocrinol 2011;32:387-97. [PMID: 21530572 DOI: 10.1016/j.yfrne.2011.04.001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Galusca B, Jeandel L, Germain N, Alexandre D, Leprince J, Anouar Y, Estour B, Chartrel N. Orexigenic neuropeptide 26RFa: new evidence for an adaptive profile of appetite regulation in anorexia nervosa. J Clin Endocrinol Metab 2012;97:2012-8. [PMID: 22466335 DOI: 10.1210/jc.2011-3396] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
2 Alim K, Lefranc B, Sopkova-de Oliveira Santos J, Dubessy C, Picot M, Boutin JA, Vaudry H, Chartrel N, Vaudry D, Chuquet J, Leprince J. Design, Synthesis, Molecular Dynamics Simulation, and Functional Evaluation of a Novel Series of 26RFa Peptide Analogues Containing a Mono- or Polyalkyl Guanidino Arginine Derivative. J Med Chem 2018;61:10185-97. [PMID: 30358997 DOI: 10.1021/acs.jmedchem.8b01332] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
3 Zhu Y, Duan Z, Mo G, Shen C, Lv L, Chen W, Lai R. A novel 26RFa peptide containing both analgesic and anti-inflammatory functions from Chinese tree shrew. Biochimie 2014;102:112-6. [PMID: 24632209 DOI: 10.1016/j.biochi.2014.02.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
4 Chartrel N, Prévost G, El Medhi M, Arabo A, Berrahmoune H, Maucotel J, Anouar Y, Picot M. [The neuropeptide 26RFa and its role in the regulation of energy metabolism]. Biol Aujourdhui 2016;210:227-35. [PMID: 28327281 DOI: 10.1051/jbio/2016024] [Reference Citation Analysis]
5 Wang W, Jiang C, Xu Y, Ma Q, Yang J, Shi Y, Zhou N. Functional characterization of neuropeptide 26RFa receptors GPR103A and GPR103B in zebrafish, Danio rerio. Cellular Signalling 2020;73:109677. [DOI: 10.1016/j.cellsig.2020.109677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Pierry C, Couve-Bonnaire S, Guilhaudis L, Neveu C, Marotte A, Lefranc B, Cahard D, Ségalas-Milazzo I, Leprince J, Pannecoucke X. Fluorinated pseudopeptide analogues of the neuropeptide 26RFa: synthesis, biological, and structural studies. Chembiochem 2013;14:1620-33. [PMID: 23940098 DOI: 10.1002/cbic.201300325] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
7 Ukena K, Osugi T, Leprince J, Vaudry H, Tsutsui K. MOLECULAR EVOLUTION OF GPCRS: 26Rfa/GPR103. Journal of Molecular Endocrinology 2014;52:T119-31. [DOI: 10.1530/jme-13-0207] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
8 Nordqvist A, Kristensson L, Johansson KE, Isaksson da Silva K, Fex T, Tyrchan C, Svensson Henriksson A, Nilsson K. New Hits as Antagonists of GPR103 Identified by HTS. ACS Med Chem Lett 2014;5:527-32. [PMID: 24900874 DOI: 10.1021/ml400519h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
9 Yoshida K, Nonaka T, Nakamura S, Araki M, Yamamoto T. Microinjection of 26RFa, an endogenous ligand for the glutamine RF-amide peptide receptor (QRFP receptor), into the rostral ventromedial medulla (RVM), locus coelureus (LC), and periaqueductal grey (PAG) produces an analgesic effect in rats. Peptides 2019;115:1-7. [PMID: 30772446 DOI: 10.1016/j.peptides.2019.02.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Alonzeau J, Alexandre D, Jeandel L, Courel M, Hautot C, Yamani FE, Gobet F, Leprince J, Magoul R, Amarti A, Pfister C, Yon L, Anouar Y, Chartrel N. The neuropeptide 26RFa is expressed in human prostate cancer and stimulates the neuroendocrine differentiation and the migration of androgeno-independent prostate cancer cells. European Journal of Cancer 2013;49:511-9. [DOI: 10.1016/j.ejca.2012.05.028] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
11 Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2020;100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
12 El-Mehdi M, Takhlidjt S, Khiar F, Prévost G, do Rego JL, do Rego JC, Benani A, Nedelec E, Godefroy D, Arabo A, Lefranc B, Leprince J, Anouar Y, Chartrel N, Picot M. Glucose homeostasis is impaired in mice deficient in the neuropeptide 26RFa (QRFP). BMJ Open Diabetes Res Care 2020;8:e000942. [PMID: 32114486 DOI: 10.1136/bmjdrc-2019-000942] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
13 Jossart C, Mulumba M, Granata R, Gallo D, Ghigo E, Marleau S, Servant MJ, Ong H. Pyroglutamylated RF-amide peptide (QRFP) gene is regulated by metabolic endotoxemia. Mol Endocrinol 2014;28:65-79. [PMID: 24284825 DOI: 10.1210/me.2013-1027] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
14 Prévost G, Picot M, Le Solliec MA, Arabo A, Berrahmoune H, El Mehdi M, Cherifi S, Benani A, Nédélec E, Gobet F, Brunel V, Leprince J, Lefebvre H, Anouar Y, Chartrel N. The neuropeptide 26RFa in the human gut and pancreas: potential involvement in glucose homeostasis. Endocr Connect 2019;8:941-51. [PMID: 31234144 DOI: 10.1530/EC-19-0247] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Georgsson J, Bergström F, Nordqvist A, Watson MJ, Blundell CD, Johansson MJ, Petersson AU, Yuan Z, Zhou Y, Kristensson L, Kakol-palm D, Tyrchan C, Wellner E, Bauer U, Brodin P, Svensson Henriksson A. GPR103 Antagonists Demonstrating Anorexigenic Activity in Vivo: Design and Development of Pyrrolo[2,3- c ]pyridines That Mimic the C-Terminal Arg-Phe Motif of QRFP26. J Med Chem 2014;57:5935-48. [DOI: 10.1021/jm401951t] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
16 Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed Pharmacother 2018;98:222-32. [PMID: 29268243 DOI: 10.1016/j.biopha.2017.12.056] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 6.4] [Reference Citation Analysis]
17 El Mehdi M, Takhlidjt S, Devère M, Arabo A, Le Solliec MA, Maucotel J, Bénani A, Nedelec E, Duparc C, Lefranc B, Leprince J, Anouar Y, Prévost G, Chartrel N, Picot M. The 26RFa (QRFP)/GPR103 neuropeptidergic system in mice relays insulin signalling into the brain to regulate glucose homeostasis. Diabetologia 2022. [PMID: 35476025 DOI: 10.1007/s00125-022-05706-5] [Reference Citation Analysis]
18 Prévost G, Arabo A, Le Solliec MA, Bons J, Picot M, Maucotel J, Berrahmoune H, El Mehdi M, Cherifi S, Benani A, Nédélec E, Coëffier M, Leprince J, Nordqvist A, Brunel V, Déchelotte P, Lefebvre H, Anouar Y, Chartrel N. Neuropeptide 26RFa (QRFP) is a key regulator of glucose homeostasis and its activity is markedly altered in obese/hyperglycemic mice. Am J Physiol Endocrinol Metab 2019;317:E147-57. [PMID: 31084498 DOI: 10.1152/ajpendo.00540.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
19 Ukena K, Tachibana T, Tobari Y, Leprince J, Vaudry H, Tsutsui K. Identification, localization and function of a novel neuropeptide, 26RFa, and its cognate receptor, GPR103, in the avian hypothalamus. General and Comparative Endocrinology 2013;190:42-6. [DOI: 10.1016/j.ygcen.2013.03.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
20 Seifinejad A, Li S, Mikhail C, Vassalli A, Pradervand S, Arribat Y, Pezeshgi Modarres H, Allen B, John RM, Amati F, Tafti M. Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019;116:17061-70. [PMID: 31375626 DOI: 10.1073/pnas.1902148116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Boutin JA, Nosjean O, Ferry G. On the Organization of a Drug Discovery Platform. In: Bobbarala V, editor. Drug Discovery - Concepts to Market. InTech; 2018. [DOI: 10.5772/intechopen.73170] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Wójcik-gładysz A, Wańkowska M, Gajewska A, Misztal T, Zielińska-górska M, Szlis M, Polkowska J. Effects of intracerebroventricular infusions of ghrelin on secretion of follicle-stimulating hormone in peripubertal female sheep. Reprod Fertil Dev 2016;28:2065. [DOI: 10.1071/rd16028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016;160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
24 Gorwood P, Blanchet-Collet C, Chartrel N, Duclos J, Dechelotte P, Hanachi M, Fetissov S, Godart N, Melchior JC, Ramoz N, Rovere-Jovene C, Tolle V, Viltart O, Epelbaum J. New Insights in Anorexia Nervosa. Front Neurosci 2016;10:256. [PMID: 27445651 DOI: 10.3389/fnins.2016.00256] [Cited by in Crossref: 89] [Cited by in F6Publishing: 46] [Article Influence: 14.8] [Reference Citation Analysis]
25 Leprince J, Neveu C, Lefranc B, Guilhaudis L, Segalas-milazzo I, do Rego J, Tena-sempere M, Tsutsui K, Vaudry H. 26RFa. Handbook of Biologically Active Peptides. Elsevier; 2013. pp. 917-23. [DOI: 10.1016/b978-0-12-385095-9.00122-6] [Cited by in Crossref: 5] [Article Influence: 0.6] [Reference Citation Analysis]
26 Trebak F, Alaoui A, Alexandre D, El Ouezzani S, Anouar Y, Chartrel N, Magoul R. Impact of aflatoxin B1 on hypothalamic neuropeptides regulating feeding behavior. Neurotoxicology 2015;49:165-73. [PMID: 26141519 DOI: 10.1016/j.neuro.2015.06.008] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.1] [Reference Citation Analysis]
27 Palotai M, Telegdy G. Anxiolytic effect of the GPR103 receptor agonist peptide P550 (homolog of neuropeptide 26RFa) in mice. Involvement of neurotransmitters. Peptides 2016;82:20-5. [PMID: 27224020 DOI: 10.1016/j.peptides.2016.05.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
28 Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin JA, Ségalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc'h M, Vaudry D, Leprince J. Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist. J Med Chem 2012;55:7516-24. [PMID: 22800498 DOI: 10.1021/jm300507d] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
29 Lefranc B, Alim K, Neveu C, Le Marec O, Dubessy C, Boutin JA, Chuquet J, Vaudry D, Prévost G, Picot M, Vaudry H, Chartrel N, Leprince J. Point-Substitution of Phenylalanine Residues of 26RFa Neuropeptide: A Structure-Activity Relationship Study. Molecules 2021;26:4312. [PMID: 34299587 DOI: 10.3390/molecules26144312] [Reference Citation Analysis]
30 Lebbe EK, Tytgat J. In the picture: disulfide-poor conopeptides, a class of pharmacologically interesting compounds. J Venom Anim Toxins Incl Trop Dis 2016;22:30. [PMID: 27826319 DOI: 10.1186/s40409-016-0083-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
31 Elhabazi K, Humbert JP, Bertin I, Schmitt M, Bihel F, Bourguignon JJ, Bucher B, Becker JA, Sorg T, Meziane H, Petit-Demoulière B, Ilien B, Simonin F. Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology 2013;75:164-71. [PMID: 23911743 DOI: 10.1016/j.neuropharm.2013.07.012] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 7.1] [Reference Citation Analysis]
32 Zagorácz O, Kovács A, László K, Ollmann T, Péczely L, Lénárd L. Effects of direct QRFP-26 administration into the medial hypothalamic area on food intake in rats. Brain Res Bull 2015;118:58-64. [PMID: 26385088 DOI: 10.1016/j.brainresbull.2015.09.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
33 Chen A, Chiu CN, Mosser EA, Kahn S, Spence R, Prober DA. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. J Neurosci 2016;36:1823-40. [PMID: 26865608 DOI: 10.1523/JNEUROSCI.2579-15.2016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
34 Chartrel N, Picot M, El Medhi M, Arabo A, Berrahmoune H, Alexandre D, Maucotel J, Anouar Y, Prévost G. The Neuropeptide 26RFa (QRFP) and Its Role in the Regulation of Energy Homeostasis: A Mini-Review. Front Neurosci 2016;10:549. [PMID: 27965532 DOI: 10.3389/fnins.2016.00549] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
35 Primeaux SD, Barnes MJ, Braymer HD. Hypothalamic QRFP: regulation of food intake and fat selection. Horm Metab Res 2013;45:967-74. [PMID: 23979792 DOI: 10.1055/s-0033-1353181] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
36 Elphick MR, Mirabeau O. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates. Front Endocrinol (Lausanne) 2014;5:93. [PMID: 24994999 DOI: 10.3389/fendo.2014.00093] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 5.8] [Reference Citation Analysis]
37 Neveu C, Dulin F, Lefranc B, Galas L, Calbrix C, Bureau R, Rault S, Chuquet J, Boutin JA, Guilhaudis L, Ségalas-Milazzo I, Vaudry D, Vaudry H, Santos JS, Leprince J. Molecular basis of agonist docking in a human GPR103 homology model by site-directed mutagenesis and structure-activity relationship studies. Br J Pharmacol 2014;171:4425-39. [PMID: 24913445 DOI: 10.1111/bph.12808] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
38 Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018;60:R171-99. [PMID: 29467140 DOI: 10.1530/JME-17-0320] [Cited by in Crossref: 48] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
39 Ayachi S, Simonin F. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents. Front Endocrinol (Lausanne) 2014;5:158. [PMID: 25324831 DOI: 10.3389/fendo.2014.00158] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]