BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hasegawa DK, Chen W, Zheng Y, Kaur N, Wintermantel WM, Simmons AM, Fei Z, Ling KS. Comparative transcriptome analysis reveals networks of genes activated in the whitefly, Bemisia tabaci when fed on tomato plants infected with Tomato yellow leaf curl virus. Virology 2018;513:52-64. [PMID: 29035786 DOI: 10.1016/j.virol.2017.10.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Nansen C, Stewart AN, Gutierrez TAM, Wintermantel WM, Mcroberts N, Gilbertson RL. Proximal remote sensing to differentiate nonviruliferous and viruliferous insect vectors – proof of concept and importance of input data robustness. Plant Pathol 2019;68:746-54. [DOI: 10.1111/ppa.12984] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
2 Wintermantel WM. Integration of Omics Approaches toward Understanding Whitefly Transmission of Viruses. Adv Virus Res 2018;102:199-223. [PMID: 30266174 DOI: 10.1016/bs.aivir.2018.06.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
3 Andreason SA, Shelby EA, Moss JB, Moore PJ, Moore AJ, Simmons AM. Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions. Insects 2020;11:E775. [PMID: 33182634 DOI: 10.3390/insects11110775] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Vinoth Kumar R, Shivaprasad PV. Plant-virus-insect tritrophic interactions: insights into the functions of geminivirus virion-sense strand genes. Proc Biol Sci 2020;287:20201846. [PMID: 33049166 DOI: 10.1098/rspb.2020.1846] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Ding TB, Li J, Chen EH, Niu JZ, Chu D. Transcriptome Profiling of the Whitefly Bemisia tabaci MED in Response to Single Infection of Tomato yellow leaf curl virus, Tomato chlorosis virus, and Their Co-infection. Front Physiol 2019;10:302. [PMID: 31001125 DOI: 10.3389/fphys.2019.00302] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
6 Li M, Zhao J, Su YL. Transcriptome Analysis of Gene Expression Profiles of Tomato Yellow Leaf Curl Virus-Infected Whiteflies over Different Viral Acquisition Access Periods. Insects 2020;11:E297. [PMID: 32403443 DOI: 10.3390/insects11050297] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Curr Opin Insect Sci 2019;33:7-18. [PMID: 31358199 DOI: 10.1016/j.cois.2019.01.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
8 Lu D, Yue H, Huang L, Zhang D, Zhang Z, Zhang Z, Zhang Y, Li F, Yan F, Zhou X, Shi X, Liu Y. Suppression of Bta11975, an α-glucosidase, by RNA interference reduces transmission of tomato chlorosis virus by Bemisia tabaci. Pest Manag Sci 2021. [PMID: 34310017 DOI: 10.1002/ps.6572] [Reference Citation Analysis]
9 Mauck KE, Chesnais Q, Shapiro LR. Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses. Adv Virus Res 2018;101:189-250. [PMID: 29908590 DOI: 10.1016/bs.aivir.2018.02.007] [Cited by in Crossref: 81] [Cited by in F6Publishing: 51] [Article Influence: 20.3] [Reference Citation Analysis]
10 Saurabh S, Mishra M, Rai P, Pandey R, Singh J, Khare A, Jain M, Singh PK. Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity-A Case for Next-Generation Control Strategies of Whiteflies. Insects 2021;12:585. [PMID: 34203297 DOI: 10.3390/insects12070585] [Reference Citation Analysis]
11 Luo C, Wang ZQ, Liu X, Zhao L, Zhou X, Xie Y. Identification and Analysis of Potential Genes Regulated by an Alphasatellite (TYLCCNA) that Contribute to Host Resistance against Tomato Yellow Leaf Curl China Virus and Its Betasatellite (TYLCCNV/TYLCCNB) Infection in Nicotiana benthamiana. Viruses 2019;11:E442. [PMID: 31096636 DOI: 10.3390/v11050442] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Wang YJ, Wang HL, Wang XW, Liu SS. Transcriptome analysis and comparison reveal divergence between the Mediterranean and the greenhouse whiteflies. PLoS One 2020;15:e0237744. [PMID: 32841246 DOI: 10.1371/journal.pone.0237744] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Nekkanti A, Chakraborty P, Ghosh A, Iquebal MA, Jaiswal S, Baranwal VK. Transcriptomic Changes of Bemisia tabaci Asia II 1 Induced by Chilli Leaf Curl Virus Trigger Infection and Circulation in Its Vector. Front Microbiol 2022;13:890807. [PMID: 35572639 DOI: 10.3389/fmicb.2022.890807] [Reference Citation Analysis]
14 Li D, Su D, Tong Z, Zhang C, Zhang G, Zhao H, Hu Z, Chiu J. Virus-Dependent and -Independent Responses of Sitobion avenae (Homoptera: Aphididae) Feeding on Wheat Infected by Transmitted and Nontransmitted Viruses at Transcriptomic Level. Journal of Economic Entomology 2019;112:2067-76. [DOI: 10.1093/jee/toz162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
15 Kaur R, Gupta M, Singh S, Pandher S. Evaluation and validation of experimental condition-specific reference genes for normalization of gene expression in Asia II-I Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Gene Expr Patterns 2019;34:119058. [PMID: 31185291 DOI: 10.1016/j.gep.2019.119058] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
16 Hussain S, Farooq M, Malik HJ, Amin I, Scheffler BE, Scheffler JA, Liu SS, Mansoor S. Whole genome sequencing of Asia II 1 species of whitefly reveals that genes involved in virus transmission and insecticide resistance have genetic variances between Asia II 1 and MEAM1 species. BMC Genomics 2019;20:507. [PMID: 31215403 DOI: 10.1186/s12864-019-5877-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
17 Carr JP, Murphy AM, Tungadi T, Yoon JY. Plant defense signals: Players and pawns in plant-virus-vector interactions. Plant Sci 2019;279:87-95. [PMID: 30709497 DOI: 10.1016/j.plantsci.2018.04.011] [Cited by in Crossref: 40] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
18 Ghosh S, Ghanim M. Factors Determining Transmission of Persistent Viruses by Bemisia tabaci and Emergence of New Virus-Vector Relationships. Viruses 2021;13:1808. [PMID: 34578388 DOI: 10.3390/v13091808] [Reference Citation Analysis]
19 Kaur N, Chen W, Fei Z, Wintermantel WM. Differences in gene expression in whitefly associated with CYSDV-infected and virus-free melon, and comparison with expression in whiteflies fed on ToCV- and TYLCV-infected tomato. BMC Genomics 2019;20:654. [PMID: 31416422 DOI: 10.1186/s12864-019-5999-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zaidi SS, Naqvi RZ, Asif M, Strickler S, Shakir S, Shafiq M, Khan AM, Amin I, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Mueller LA, Mansoor S. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). Plant Biotechnol J 2020;18:691-706. [PMID: 31448544 DOI: 10.1111/pbi.13236] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
21 Catto MA, Mugerwa H, Myers BK, Pandey S, Dutta B, Srinivasan R. A Review on Transcriptional Responses of Interactions between Insect Vectors and Plant Viruses. Cells 2022;11:693. [DOI: 10.3390/cells11040693] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Han J, Rotenberg D. Integration of transcriptomics and network analysis reveals co-expressed genes in Frankliniella occidentalis larval guts that respond to tomato spotted wilt virus infection. BMC Genomics 2021;22:810. [PMID: 34758725 DOI: 10.1186/s12864-021-08100-4] [Reference Citation Analysis]
23 Peñalver-Cruz A, Garzo E, Prieto-Ruiz I, Díaz-Carro M, Winters A, Moreno A, Fereres A. Feeding behavior, life history, and virus transmission ability of Bemisia tabaci Mediterranean species (Hemiptera: Aleyrodidae) under elevated CO2. Insect Sci 2020;27:558-70. [PMID: 30672655 DOI: 10.1111/1744-7917.12661] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
24 Shamimuzzaman M, Hasegawa DK, Chen W, Simmons AM, Fei Z, Ling KS. Genome-wide profiling of piRNAs in the whitefly Bemisia tabaci reveals cluster distribution and association with begomovirus transmission. PLoS One 2019;14:e0213149. [PMID: 30861037 DOI: 10.1371/journal.pone.0213149] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
25 Hasegawa DK, Shamimuzzaman M, Chen W, Simmons AM, Fei Z, Ling KS. Deep Sequencing of Small RNAs in the Whitefly Bemisia tabaci Reveals Novel MicroRNAs Potentially Associated with Begomovirus Acquisition and Transmission. Insects 2020;11:E562. [PMID: 32842525 DOI: 10.3390/insects11090562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Zhao J, Chi Y, Zhang XJ, Lei T, Wang XW, Liu SS. Comparative proteomic analysis provides new insight into differential transmission of two begomoviruses by a whitefly. Virol J 2019;16:32. [PMID: 30857562 DOI: 10.1186/s12985-019-1138-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]