BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Okeke I, Agwu K, Ubachukwu A, Madiba I, Maaza M, Whyte G, Ezema F. Impact of particle size and surface defects on antibacterial and photocatalytic activities of undoped and Mg-doped ZnO nanoparticles, biosynthesized using one-step simple process. Vacuum 2021;187:110110. [DOI: 10.1016/j.vacuum.2021.110110] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Belghiti M, Tanji K, El Mersly L, Lamsayety I, Ouzaouit K, Faqir H, Benzakour I, Rafqah S, Outzourhit A. Fast and non-selective photodegradation of basic yellow 28, malachite green, tetracycline, and sulfamethazine using a nanosized ZnO synthesized from zinc ore. Reac Kinet Mech Cat. [DOI: 10.1007/s11144-022-02232-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Ayon SA, Jamal M, Billah MM, Neaz S. Augmentation of magnetic properties and antimicrobial activities of band gap modified Ho3+ and Sm3+ doped ZnO nanoparticles: A comparative experimental study. Journal of Alloys and Compounds 2022;897:163179. [DOI: 10.1016/j.jallcom.2021.163179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Moulahi A. Efficient photocatalytic performance of Mg doping ZnO for the photodegradation of the rhodamine B. Inorganic Chemistry Communications 2021;133:108906. [DOI: 10.1016/j.inoche.2021.108906] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Kejela Tolossa W, Taddesse Shibeshi P. Structural, optical and enhanced antibacterial activities of ZnO and (Co, Fe) co-doped ZnO nanoparticles by sol-gel combustion method. Chemical Physics Letters 2022;795:139519. [DOI: 10.1016/j.cplett.2022.139519] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Borah D, Saikia P, Sarmah P, Gogoi D, Rout J, Ghosh NN, Bhattacharjee CR. Composition controllable alga-mediated green synthesis of covellite CuS nanostructure: An efficient photocatalyst for degradation of toxic dye. Inorganic Chemistry Communications 2022;142:109608. [DOI: 10.1016/j.inoche.2022.109608] [Reference Citation Analysis]
6 Sá AS, de Lima IS, Honório LM, Furtini MB, de Souza JKD, dos Santos FEP, Barreto HM, Tabuti TG, da Silva-filho EC, Triboni ER, Osajima JA. ROS-mediated antibacterial response of ZnO and ZnO containing cerium under light. Chem Pap . [DOI: 10.1007/s11696-022-02390-y] [Reference Citation Analysis]
7 Okeke IS, Agwu KK, Ubachukwu AA, Ezema FI. Influence of transition metal doping on physiochemical and antibacterial properties of ZnO Nanoparticles: A review. Applied Surface Science Advances 2022;8:100227. [DOI: 10.1016/j.apsadv.2022.100227] [Reference Citation Analysis]
8 Worku AK, Ayele DW, Habtu NG, Melas GA, Yemata TA, Mekonnen NY, Teshager MA. Structural and thermal properties of pure and chromium doped zinc oxide nanoparticles. SN Appl Sci 2021;3. [DOI: 10.1007/s42452-021-04682-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Li H, Liu J, Wang C, Yang H, Xue X. Oxygen vacancies-enriched and porous hierarchical structures of ZnO microspheres with improved photocatalytic performance. Vacuum 2022. [DOI: 10.1016/j.vacuum.2022.110891] [Reference Citation Analysis]
10 Sha S, Hou Q, Qi M, Zhao C. Effects of Coexistence of Mo and Zn Vacancies with Different Valence States and Interstitial H on the Magneto-optical Properties of ZnO: First-principles calculations. Chemical Physics 2022. [DOI: 10.1016/j.chemphys.2022.111589] [Reference Citation Analysis]
11 Shen H, Shi X, Wang Z, Hou Z, Xu C, Duan L, Zhao X, Wu H. Defects control and origins of blue and green emissions in sol-gel ZnO thin films. Vacuum 2022;202:111201. [DOI: 10.1016/j.vacuum.2022.111201] [Reference Citation Analysis]
12 Batra K, Sinha N, Kumar B. Ba-doped ZnO nanorods: Efficient piezoelectric filler material for PDMS based flexible nanogenerator. Vacuum 2021;191:110385. [DOI: 10.1016/j.vacuum.2021.110385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Matur U, Duru I, Akcan D. Tracking optical properties of ZnO:Mg thin films: Experimental and first principles calculations. Ceramics International 2022;48:19090-7. [DOI: 10.1016/j.ceramint.2022.03.199] [Reference Citation Analysis]
14 Kaci M, Nasrallah N, Djaballah A, Akkari I, Belabed C, Soukeur A, Atmani F, Trari M. Insights into the optical and electrochemical features of CuAl2O4 nanoparticles and it use for methyl violet oxidation under sunlight exposure. Optical Materials 2022;126:112198. [DOI: 10.1016/j.optmat.2022.112198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Daramola IO, Ojemaye MO, Okoh AI, Okoh OO. Occurrence of herbicides in the aquatic environment and their removal using advanced oxidation processes: a critical review. Environ Geochem Health 2022. [PMID: 35798909 DOI: 10.1007/s10653-022-01326-5] [Reference Citation Analysis]