BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kask AS, Chen X, Marshak JO, Dong L, Saracino M, Chen D, Jarrahian C, Kendall MA, Koelle DM. DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. Vaccine 2010;28:7483-91. [PMID: 20851091 DOI: 10.1016/j.vaccine.2010.09.014] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Fernando GJ, Zhang J, Ng HI, Haigh OL, Yukiko SR, Kendall MA. Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8(+) T cell responses. J Control Release 2016;237:35-41. [PMID: 27381247 DOI: 10.1016/j.jconrel.2016.06.045] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
2 Marshak JO, Dong L, Koelle DM. The Murine Intravaginal HSV-2 Challenge Model for Investigation of DNA Vaccines. Methods Mol Biol 2020;2060:429-54. [PMID: 31617196 DOI: 10.1007/978-1-4939-9814-2_27] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021;13:2091. [PMID: 34959372 DOI: 10.3390/pharmaceutics13122091] [Reference Citation Analysis]
4 Crichton ML, Donose BC, Chen X, Raphael AP, Huang H, Kendall MA. The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials 2011;32:4670-81. [PMID: 21458062 DOI: 10.1016/j.biomaterials.2011.03.012] [Cited by in Crossref: 98] [Cited by in F6Publishing: 80] [Article Influence: 8.9] [Reference Citation Analysis]
5 Turvey ME, Uppu DSSM, Mohamed Sharif AR, Bidet K, Alonso S, Ooi EE, Hammond PT. Microneedle-based intradermal delivery of stabilized dengue virus. Bioeng Transl Med 2019;4:e10127. [PMID: 31249877 DOI: 10.1002/btm2.10127] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
6 Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD Jr. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021;18:151-67. [PMID: 32924651 DOI: 10.1080/17425247.2021.1823964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Ingrole RSJ, Gill HS. Microneedle Coating Methods: A Review with a Perspective. J Pharmacol Exp Ther 2019;370:555-69. [PMID: 31175217 DOI: 10.1124/jpet.119.258707] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
8 Gantt S, Muller WJ. The immunologic basis for severe neonatal herpes disease and potential strategies for therapeutic intervention. Clin Dev Immunol 2013;2013:369172. [PMID: 23606868 DOI: 10.1155/2013/369172] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
9 Dutton JL, Li B, Woo WP, Marshak JO, Xu Y, Huang ML, Dong L, Frazer IH, Koelle DM. A novel DNA vaccine technology conveying protection against a lethal herpes simplex viral challenge in mice. PLoS One 2013;8:e76407. [PMID: 24098493 DOI: 10.1371/journal.pone.0076407] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
10 Hossain MK, Ahmed T, Bhusal P, Subedi RK, Salahshoori I, Soltani M, Hassanzadeganroudsari M. Microneedle Systems for Vaccine Delivery: the story so far. Expert Rev Vaccines 2020;19:1153-66. [PMID: 33427523 DOI: 10.1080/14760584.2020.1874928] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
11 Hegde NR, Kaveri SV, Bayry J. Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discovery Today 2011;16:1061-8. [DOI: 10.1016/j.drudis.2011.07.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 3.8] [Reference Citation Analysis]
12 Pearson FE, Muller DA, Roalfe L, Zancolli M, Goldblatt D, Kendall MA. Functional anti-polysaccharide IgG titres induced by unadjuvanted pneumococcal-conjugate vaccine when delivered by microprojection-based skin patch. Vaccine 2015;33:6675-83. [PMID: 26518398 DOI: 10.1016/j.vaccine.2015.10.081] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
13 Jenkins D, Corrie S, Flaim C, Kendall M. High density and high aspect ratio solid micro-nanoprojection arrays for targeted skin vaccine delivery and specific antibody extraction. RSC Adv 2012;2:3490. [DOI: 10.1039/c2ra20153d] [Cited by in Crossref: 42] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
14 Shlapobersky M, Marshak JO, Dong L, Huang ML, Wei Q, Chu A, Rolland A, Sullivan S, Koelle DM. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J Gen Virol 2012;93:1305-15. [PMID: 22398318 DOI: 10.1099/vir.0.040055-0] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
15 Lo M, Zhu J, Hansen SG, Carroll T, Farr Zuend C, Nöel-Romas L, Ma ZM, Fritts L, Huang ML, Sun S, Huang Y, Koelle DM, Picker LJ, Burgener A, Corey L, Miller CJ. Acute Infection and Subsequent Subclinical Reactivation of Herpes Simplex Virus 2 after Vaginal Inoculation of Rhesus Macaques. J Virol 2019;93:e01574-18. [PMID: 30333177 DOI: 10.1128/JVI.01574-18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, Hanes J. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med 2012;4:138ra79. [PMID: 22700955 DOI: 10.1126/scitranslmed.3003453] [Cited by in Crossref: 209] [Cited by in F6Publishing: 195] [Article Influence: 20.9] [Reference Citation Analysis]
17 Jing L, Haas J, Chong TM, Bruckner JJ, Dann GC, Dong L, Marshak JO, McClurkan CL, Yamamoto TN, Bailer SM, Laing KJ, Wald A, Verjans GM, Koelle DM. Cross-presentation and genome-wide screening reveal candidate T cells antigens for a herpes simplex virus type 1 vaccine. J Clin Invest 2012;122:654-73. [PMID: 22214845 DOI: 10.1172/JCI60556] [Cited by in Crossref: 56] [Cited by in F6Publishing: 46] [Article Influence: 5.6] [Reference Citation Analysis]
18 Okuda K, Wada Y, Shimada M. Recent Developments in Preclinical DNA Vaccination. Vaccines (Basel) 2014;2:89-106. [PMID: 26344468 DOI: 10.3390/vaccines2010089] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
19 Odegard JM, Flynn PA, Campbell DJ, Robbins SH, Dong L, Wang K, Ter Meulen J, Cohen JI, Koelle DM. A novel HSV-2 subunit vaccine induces GLA-dependent CD4 and CD8 T cell responses and protective immunity in mice and guinea pigs. Vaccine 2016;34:101-9. [PMID: 26571309 DOI: 10.1016/j.vaccine.2015.10.137] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
20 Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011;29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Cited by in Crossref: 74] [Cited by in F6Publishing: 66] [Article Influence: 6.7] [Reference Citation Analysis]
21 Haigh O, Depelsenaire AC, Meliga SC, Yukiko SR, Mcmillan NA, Frazer IH, Kendall MA. CXCL1 gene silencing in skin using liposome-encapsulated siRNA delivered by microprojection array. Journal of Controlled Release 2014;194:148-56. [DOI: 10.1016/j.jconrel.2014.08.021] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
22 Pearson FE, McNeilly CL, Crichton ML, Primiero CA, Yukiko SR, Fernando GJ, Chen X, Gilbert SC, Hill AV, Kendall MA. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice. PLoS One 2013;8:e67888. [PMID: 23874462 DOI: 10.1371/journal.pone.0067888] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 6.2] [Reference Citation Analysis]
23 McCaffrey J, Donnelly RF, McCarthy HO. Microneedles: an innovative platform for gene delivery. Drug Deliv Transl Res 2015;5:424-37. [PMID: 26122168 DOI: 10.1007/s13346-015-0243-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
24 Yan L, Yang Y, Zhang W, Chen X. Advanced materials and nanotechnology for drug delivery. Adv Mater 2014;26:5533-40. [PMID: 24449177 DOI: 10.1002/adma.201305683] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 5.5] [Reference Citation Analysis]
25 Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012;64:1547-68. [PMID: 22575858 DOI: 10.1016/j.addr.2012.04.005] [Cited by in Crossref: 951] [Cited by in F6Publishing: 816] [Article Influence: 95.1] [Reference Citation Analysis]
26 Gill HS, Kang SM, Quan FS, Compans RW. Cutaneous immunization: an evolving paradigm in influenza vaccines. Expert Opin Drug Deliv 2014;11:615-27. [PMID: 24521050 DOI: 10.1517/17425247.2014.885947] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
27 Stanfield B, Kousoulas KG. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections. Curr Clin Microbiol Rep 2015;2:125-36. [PMID: 27114893 DOI: 10.1007/s40588-015-0020-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
28 Peyraud N, Zehrung D, Jarrahian C, Frivold C, Orubu T, Giersing B. Potential use of microarray patches for vaccine delivery in low- and middle- income countries. Vaccine 2019;37:4427-34. [PMID: 31262587 DOI: 10.1016/j.vaccine.2019.03.035] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
29 Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal HMN. Microneedles in Smart Drug Delivery. Adv Wound Care (New Rochelle) 2021;10:204-19. [PMID: 32320365 DOI: 10.1089/wound.2019.1122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
30 Pearton M, Saller V, Coulman SA, Gateley C, Anstey AV, Zarnitsyn V, Birchall JC. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J Control Release 2012;160:561-9. [PMID: 22516089 DOI: 10.1016/j.jconrel.2012.04.005] [Cited by in Crossref: 82] [Cited by in F6Publishing: 73] [Article Influence: 8.2] [Reference Citation Analysis]
31 Suh H, Shin J, Kim YC. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 2014;3:42-9. [PMID: 24427762 DOI: 10.7774/cevr.2014.3.1.42] [Cited by in Crossref: 63] [Cited by in F6Publishing: 53] [Article Influence: 7.0] [Reference Citation Analysis]
32 Weniger BG, Papania MJ. Alternative vaccine delivery methods. Vaccines. Elsevier; 2013. pp. 1200-31. [DOI: 10.1016/b978-1-4557-0090-5.00063-x] [Cited by in Crossref: 28] [Article Influence: 3.1] [Reference Citation Analysis]
33 Nguyen TT, Oh Y, Kim Y, Shin Y, Baek SK, Park JH. Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother 2021;17:316-27. [PMID: 32667239 DOI: 10.1080/21645515.2020.1767997] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
34 Bhargav A, Muller DA, Kendall MAF, Corrie SR. Surface Modifications of Microprojection Arrays for Improved Biomarker Capture in the Skin of Live Mice. ACS Appl Mater Interfaces 2012;4:2483-9. [DOI: 10.1021/am3001727] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
35 Badizadegan K, Goodson JL, Rota PA, Thompson KM. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Rev Vaccines 2020;19:175-94. [PMID: 32182145 DOI: 10.1080/14760584.2020.1732215] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
36 Chen X, Fernando GJ, Crichton ML, Flaim C, Yukiko SR, Fairmaid EJ, Corbett HJ, Primiero CA, Ansaldo AB, Frazer IH, Brown LE, Kendall MA. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Control Release 2011;152:349-55. [PMID: 21371510 DOI: 10.1016/j.jconrel.2011.02.026] [Cited by in Crossref: 129] [Cited by in F6Publishing: 111] [Article Influence: 11.7] [Reference Citation Analysis]
37 Johnston C, Koelle DM, Wald A. Current status and prospects for development of an HSV vaccine. Vaccine 2014;32:1553-60. [PMID: 24016811 DOI: 10.1016/j.vaccine.2013.08.066] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 5.3] [Reference Citation Analysis]
38 Grice JE, Prow TW, Kendall MAF, Roberts MS. Electrical and Physical Methods of Skin Penetration Enhancement. In: Benson HAE, Watkinson AC, editors. Topical and Transdermal Drug Delivery. Hoboken: John Wiley & Sons, Inc.; 2011. pp. 43-65. [DOI: 10.1002/9781118140505.ch3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
39 Marshak JO, Dong L, Koelle DM. The murine intravaginal HSV-2 challenge model for investigation of DNA vaccines. Methods Mol Biol 2014;1144:305-27. [PMID: 24671693 DOI: 10.1007/978-1-4939-0428-0_21] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
40 Ng HI, Fernando GJ, Kendall MA. Induction of potent CD8⁺ T cell responses through the delivery of subunit protein vaccines to skin antigen-presenting cells using densely packed microprojection arrays. J Control Release 2012;162:477-84. [PMID: 22841796 DOI: 10.1016/j.jconrel.2012.07.024] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
41 Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD Jr. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021;171:164-86. [PMID: 33539853 DOI: 10.1016/j.addr.2021.01.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 21.0] [Reference Citation Analysis]
42 Fernando GJ, Chen X, Primiero CA, Yukiko SR, Fairmaid EJ, Corbett HJ, Frazer IH, Brown LE, Kendall MA. Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. J Control Release 2012;159:215-21. [PMID: 22306334 DOI: 10.1016/j.jconrel.2012.01.030] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 6.3] [Reference Citation Analysis]
43 Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013;12:537-54. [PMID: 23659301 DOI: 10.1586/erv.13.33] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
44 Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release 2016;240:135-41. [PMID: 26603347 DOI: 10.1016/j.jconrel.2015.11.019] [Cited by in Crossref: 105] [Cited by in F6Publishing: 100] [Article Influence: 15.0] [Reference Citation Analysis]
45 He B, Yang Y, Yuen M, Chen X, Lee C, Zhang W. Vertical nanostructure arrays by plasma etching for applications in biology, energy, and electronics. Nano Today 2013;8:265-89. [DOI: 10.1016/j.nantod.2013.04.008] [Cited by in Crossref: 60] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]