BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li H, Qi H, Chang J, Gai P, Li F. Recent progress in homogeneous electrochemical sensors and their designs and applications. TrAC Trends in Analytical Chemistry 2022;156:116712. [DOI: 10.1016/j.trac.2022.116712] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu S, Jiang X, Wan F, Jia S, Si S. A novel detection of MicroRNA based on homogeneous electrochemical sensor with enzyme-assisted signal amplification. Talanta 2023;256:124263. [PMID: 36681037 DOI: 10.1016/j.talanta.2023.124263] [Reference Citation Analysis]
2 Theyagarajan K, Kim Y. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. Biosensors 2023;13:424. [DOI: 10.3390/bios13040424] [Reference Citation Analysis]
3 Xu F, Wang L, Wu M, Ma G. Vertical growth of leaf-like Co-metal organic framework on carbon fiber cloth as integrated electrode for sensitive detection of dopamine and uric acid. Sensors and Actuators B: Chemical 2023. [DOI: 10.1016/j.snb.2023.133734] [Reference Citation Analysis]
4 Chen Y, Li G, Mu W, Wan X, Lu D, Gao J, Wen D. Nonenzymatic Sweat Wearable Uric Acid Sensor Based on N-Doped Reduced Graphene Oxide/Au Dual Aerogels. Anal Chem 2023;95:3864-72. [PMID: 36745592 DOI: 10.1021/acs.analchem.2c05613] [Reference Citation Analysis]
5 Zhang M, Liu H, Wang X. Cholesterol oxidase-immobilized MXene/sodium alginate/silica@n-docosane hierarchical microcapsules for ultrasensitive electrochemical biosensing detection of cholesterol. J Mater Chem B 2023;11:1506-22. [PMID: 36655921 DOI: 10.1039/d2tb02367a] [Reference Citation Analysis]
6 Zhao Y, Liu Q, Qin Y, Cao Y, Zhao J, Zhang K, Cao Y. Ordered Labeling-Facilitated Electrochemical Assay of Alpha-Fetoprotein-L3 Ratio for Diagnosing Hepatocellular Carcinoma. ACS Appl Mater Interfaces 2023;15:6411-9. [PMID: 36693188 DOI: 10.1021/acsami.2c19231] [Reference Citation Analysis]
7 Padnya P, Khadieva A, Stoikov I. Current achievements and perspectives in synthesis and applications of 3,7-disubstituted phenothiazines as Methylene Blue analogues. Dyes and Pigments 2022;208:110806. [DOI: 10.1016/j.dyepig.2022.110806] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
8 Li M, Cheng J, Zheng H, Shi J, Shen Q. Label-free homogeneous electrochemical sensing strategy for microRNA detection. Microchemical Journal 2022;183:108097. [DOI: 10.1016/j.microc.2022.108097] [Reference Citation Analysis]
9 Zhu C, Wang X, Yang Y, Chen L, Yu D. Research progress on ratiometric electrochemical sensing of mycotoxins. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.117115] [Reference Citation Analysis]
10 Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. Biosensors 2022;12:954. [DOI: 10.3390/bios12110954] [Reference Citation Analysis]
11 Umapathi R, Venkateswara Raju C, Majid Ghoreishian S, Mohana Rani G, Kumar K, Oh M, Pil Park J, Suk Huh Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coordination Chemistry Reviews 2022;470:214708. [DOI: 10.1016/j.ccr.2022.214708] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
12 Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. Nanomaterials (Basel) 2022;12:3248. [PMID: 36145036 DOI: 10.3390/nano12183248] [Reference Citation Analysis]