BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Martens S, Hofmans S, Declercq W, Augustyns K, Vandenabeele P. Inhibitors Targeting RIPK1/RIPK3: Old and New Drugs. Trends Pharmacol Sci 2020;41:209-24. [PMID: 32035657 DOI: 10.1016/j.tips.2020.01.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021;64:1283-345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
2 Qiu J, Jiang T, Yang G, Gong Y, Zhang W, Zheng X, Chen H, Hong Z. Neratinib Exerts Dual Effects on Cartilage Degradation and Osteoclast Production in Osteoarthritis by Inhibiting the Activation of the MAPK/NF-κB Signaling Pathways. Biochem Pharmacol 2022;:115155. [PMID: 35820500 DOI: 10.1016/j.bcp.2022.115155] [Reference Citation Analysis]
3 Hua Y, Qian J, Cao J, Wang X, Zhang W, Zhang J. Ca2+/Calmodulin-Dependent Protein Kinase II Regulation by Inhibitor of Receptor Interacting Protein Kinase 3 Alleviates Necroptosis in Glycation End Products-Induced Cardiomyocytes Injury. IJMS 2022;23:6988. [DOI: 10.3390/ijms23136988] [Reference Citation Analysis]
4 Baykal Köse S, Yalçin P. Altered apoptotic protein expressions characterize the survival of Bcr-Abl-independent drug-resistant chronic myeloid leukemia cell line. Journal of Basic and Clinical Health Sciences 2021;5:1-5. [DOI: 10.30621/jbachs.848797] [Reference Citation Analysis]
5 Huang T, Gu J, Jiang H, Liang Q, Perlmutter JS, Tu Z. Radiosynthesis and characterization of a carbon-11 PET tracer for receptor-interacting protein kinase 1. Nuclear Medicine and Biology 2022;110-111:18-27. [DOI: 10.1016/j.nucmedbio.2022.04.006] [Reference Citation Analysis]
6 Delehouzé C, Comte A, Leon-Icaza SA, Cougoule C, Hauteville M, Goekjian P, Bulinski JC, Dimanche-Boitrel MT, Meunier E, Rousselot M, Bach S. Nigratine as dual inhibitor of necroptosis and ferroptosis regulated cell death. Sci Rep 2022;12:5118. [PMID: 35332201 DOI: 10.1038/s41598-022-09019-w] [Reference Citation Analysis]
7 Anderton H, Wicks IP, Silke J. Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol 2020;16:496-513. [PMID: 32641743 DOI: 10.1038/s41584-020-0455-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
8 Bedient L, Pokharel SM, Chiok KR, Mohanty I, Beach SS, Miura TA, Bose S. Lytic Cell Death Mechanisms in Human Respiratory Syncytial Virus-Infected Macrophages: Roles of Pyroptosis and Necroptosis. Viruses 2020;12:E932. [PMID: 32854254 DOI: 10.3390/v12090932] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
9 Zhang Y, Chen X, Jia L, Zhang Y. Potential mechanism of SARS-CoV-2-associated central and peripheral nervous system impairment. Acta Neurol Scand 2022. [PMID: 35699161 DOI: 10.1111/ane.13657] [Reference Citation Analysis]
10 Silke J, O'Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021;13:4510. [PMID: 34572737 DOI: 10.3390/cancers13184510] [Reference Citation Analysis]
11 Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J 2021;40:e106700. [PMID: 33439509 DOI: 10.15252/embj.2020106700] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
12 Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. The Role of Necroptosis: Biological Relevance and Its Involvement in Cancer. Cancers (Basel) 2021;13:684. [PMID: 33567618 DOI: 10.3390/cancers13040684] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
13 Jeon J, Noh HJ, Lee H, Park HH, Ha YJ, Park SH, Lee H, Kim SJ, Kang HC, Eyun SI, Yang S, Kim YS. TRIM24-RIP3 axis perturbation accelerates osteoarthritis pathogenesis. Ann Rheum Dis 2020;79:1635-43. [PMID: 32895234 DOI: 10.1136/annrheumdis-2020-217904] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Mocarski ES, Mandal P. TNF-dependent hyperactivation of RIPK1-dependent cytotoxic signaling during embryogenesis and inflammation. PLoS Biol 2021;19:e3001371. [PMID: 34464377 DOI: 10.1371/journal.pbio.3001371] [Reference Citation Analysis]
15 Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP Kinases in Chronic Inflammatory Disease. Biomolecules 2021;11:646. [PMID: 33924766 DOI: 10.3390/biom11050646] [Reference Citation Analysis]
16 López-Otín C, Kroemer G. Hallmarks of Health. Cell 2021;184:33-63. [PMID: 33340459 DOI: 10.1016/j.cell.2020.11.034] [Cited by in Crossref: 37] [Cited by in F6Publishing: 45] [Article Influence: 18.5] [Reference Citation Analysis]
17 Riebeling T, Jamal K, Wilson R, Kolbrink B, von Samson-Himmelstjerna FA, Moerke C, Ramos Garcia L, Dahlke E, Michels F, Lühder F, Schunk D, Doldi P, Tyczynski B, Kribben A, Flüh C, Theilig F, Kunzendorf U, Meier P, Krautwald S. Primidone blocks RIPK1-driven cell death and inflammation. Cell Death Differ 2021;28:1610-26. [PMID: 33273695 DOI: 10.1038/s41418-020-00690-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
18 Harris PA. Inhibitors of RIP1 kinase: a patent review (2016-present). Expert Opin Ther Pat 2021;31:137-51. [PMID: 33249869 DOI: 10.1080/13543776.2021.1854729] [Reference Citation Analysis]
19 Eng VV, Wemyss MA, Pearson JS. The diverse roles of RIP kinases in host-pathogen interactions. Semin Cell Dev Biol 2021;109:125-43. [PMID: 32859501 DOI: 10.1016/j.semcdb.2020.08.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
20 Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020;21:E5931. [PMID: 32824744 DOI: 10.3390/ijms21165931] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Wenzel J, Lampe J, Müller-Fielitz H, Schuster R, Zille M, Müller K, Krohn M, Körbelin J, Zhang L, Özorhan Ü, Neve V, Wagner JUG, Bojkova D, Shumliakivska M, Jiang Y, Fähnrich A, Ott F, Sencio V, Robil C, Pfefferle S, Sauve F, Coêlho CFF, Franz J, Spiecker F, Lembrich B, Binder S, Feller N, König P, Busch H, Collin L, Villaseñor R, Jöhren O, Altmeppen HC, Pasparakis M, Dimmeler S, Cinatl J, Püschel K, Zelic M, Ofengeim D, Stadelmann C, Trottein F, Nogueiras R, Hilgenfeld R, Glatzel M, Prevot V, Schwaninger M. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci 2021;24:1522-33. [PMID: 34675436 DOI: 10.1038/s41593-021-00926-1] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Shi Y, Chen X, Huang C, Pollock C. RIPK3: A New Player in Renal Fibrosis. Front Cell Dev Biol 2020;8:502. [PMID: 32613000 DOI: 10.3389/fcell.2020.00502] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 DeRoo E, Zhou T, Liu B. The Role of RIPK1 and RIPK3 in Cardiovascular Disease. Int J Mol Sci 2020;21:E8174. [PMID: 33142926 DOI: 10.3390/ijms21218174] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Dai W, Cheng J, Leng X, Hu X, Ao Y. The potential role of necroptosis in clinical diseases (Review). Int J Mol Med 2021;47:89. [PMID: 33786617 DOI: 10.3892/ijmm.2021.4922] [Reference Citation Analysis]
25 Zheng J, Wu J, Ding X, Shen HC, Zou G. Small molecule approaches to treat autoimmune and inflammatory diseases (Part I): Kinase inhibitors. Bioorg Med Chem Lett 2021;38:127862. [PMID: 33609659 DOI: 10.1016/j.bmcl.2021.127862] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
26 Zheng M, Choi N, Jang Y, Kwak DE, Kim Y, Kim WS, Oh SH, Sung JH. Hair growth promotion by necrostatin-1s. Sci Rep 2020;10:17622. [PMID: 33077863 DOI: 10.1038/s41598-020-74796-1] [Reference Citation Analysis]
27 Kist M, Kőműves LG, Goncharov T, Dugger DL, Yu C, Roose-Girma M, Newton K, Webster JD, Vucic D. Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and inflammatory cell death. Cell Death Differ 2021;28:985-1000. [PMID: 32999468 DOI: 10.1038/s41418-020-00629-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
28 Bepari AK, Takebayashi H, Namme JN, Rahman GMS, Reza HM. A computational study to target necroptosis via RIPK1 inhibition. J Biomol Struct Dyn 2022;:1-16. [PMID: 35938618 DOI: 10.1080/07391102.2022.2108900] [Reference Citation Analysis]
29 Prajapati S, Tomar B, Srivastava A, Narkhede YB, Gaikwad AN, Lahiri A, Mulay SR. 6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation. Life Sci 2021;271:119193. [PMID: 33577856 DOI: 10.1016/j.lfs.2021.119193] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Park MY, Ha SE, Vetrivel P, Kim HH, Bhosale PB, Abusaliya A, Kim GS. Differences of Key Proteins between Apoptosis and Necroptosis. Biomed Res Int 2021;2021:3420168. [PMID: 34934768 DOI: 10.1155/2021/3420168] [Reference Citation Analysis]
31 Sabnis RW. Novel Thienopyridines as RIPK2 Inhibitors for Treating Inflammatory Bowel Disease. ACS Med Chem Lett 2020;11:2366-7. [PMID: 33335655 DOI: 10.1021/acsmedchemlett.0c00591] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther 2020;214:107593. [PMID: 32492512 DOI: 10.1016/j.pharmthera.2020.107593] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
33 Zhao W, Liu Y, Xu L, He Y, Cai Z, Yu J, Zhang W, Xing C, Zhuang C, Qu Z. Targeting Necroptosis as a Promising Therapy for Alzheimer's Disease. ACS Chem Neurosci 2022. [PMID: 35607807 DOI: 10.1021/acschemneuro.2c00172] [Reference Citation Analysis]
34 Gao S, Huang X, Zhang Y, Bao L, Wang X, Zhang M. Investigation on the expression regulation of RIPK1/RIPK3 in the retinal ganglion cells (RGCs) cultured in high glucose. Bioengineered 2021;12:3947-56. [PMID: 34281454 DOI: 10.1080/21655979.2021.1944456] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Fiani B, Kondilis A, Soula M, Tao A, Alvi MA. Novel Methods of Necroptosis Inhibition for Spinal Cord Injury Using Translational Research to Limit Secondary Injury and Enhance Endogenous Repair and Regeneration. Neurospine 2021;18:261-70. [PMID: 33494555 DOI: 10.14245/ns.2040722.361] [Reference Citation Analysis]
36 Yan J, Wan P, Choksi S, Liu ZG. Necroptosis and tumor progression. Trends Cancer 2021:S2405-8033(21)00193-X. [PMID: 34627742 DOI: 10.1016/j.trecan.2021.09.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
37 Song S, Ding Y, Dai GL, Zhang Y, Xu MT, Shen JR, Chen TT, Chen Y, Meng GL. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin 2021;42:230-41. [PMID: 32770173 DOI: 10.1038/s41401-020-0490-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 25.0] [Reference Citation Analysis]
38 Horvath C, Young M, Jarabicova I, Kindernay L, Ferenczyova K, Ravingerova T, Lewis M, Suleiman MS, Adameova A. Inhibition of Cardiac RIP3 Mitigates Early Reperfusion Injury and Calcium-Induced Mitochondrial Swelling without Altering Necroptotic Signalling. Int J Mol Sci 2021;22:7983. [PMID: 34360749 DOI: 10.3390/ijms22157983] [Reference Citation Analysis]
39 Belyaeva A, Cammarata L, Radhakrishnan A, Squires C, Yang KD, Shivashankar GV, Uhler C. Causal network models of SARS-CoV-2 expression and aging to identify candidates for drug repurposing. Nat Commun 2021;12:1024. [PMID: 33589624 DOI: 10.1038/s41467-021-21056-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
40 Tovey Crutchfield EC, Garnish SE, Hildebrand JM. The Role of the Key Effector of Necroptotic Cell Death, MLKL, in Mouse Models of Disease. Biomolecules 2021;11:803. [PMID: 34071602 DOI: 10.3390/biom11060803] [Reference Citation Analysis]
41 Webster JD, Vucic D. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Front Cell Dev Biol 2020;8:365. [PMID: 32671059 DOI: 10.3389/fcell.2020.00365] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
42 Anderton H, Alqudah S. Cell death in skin function, inflammation, and disease. Biochem J 2022;479:1621-51. [PMID: 35929827 DOI: 10.1042/BCJ20210606] [Reference Citation Analysis]
43 Herbst S, Lewis PA. From structure to ætiology: a new window on the biology of leucine-rich repeat kinase 2 and Parkinson's disease. Biochem J 2021;478:2945-51. [PMID: 34328508 DOI: 10.1042/BCJ20210383] [Reference Citation Analysis]
44 Place DE, Kanneganti TD. The innate immune system and cell death in autoinflammatory and autoimmune disease. Curr Opin Immunol 2020;67:95-105. [PMID: 33242752 DOI: 10.1016/j.coi.2020.10.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]