BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sis MJ, Webber MJ. Drug Delivery with Designed Peptide Assemblies. Trends in Pharmacological Sciences 2019;40:747-62. [DOI: 10.1016/j.tips.2019.08.003] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Abraham BL, Agredo P, Mensah SG, Nilsson BL. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives. Langmuir 2022;38:15494-505. [PMID: 36473193 DOI: 10.1021/acs.langmuir.2c01394] [Reference Citation Analysis]
2 Korovkina O, Polyakov D, Korzhikov-Vlakh V, Korzhikova-Vlakh E. Stimuli-Responsive Polypeptide Nanoparticles for Enhanced DNA Delivery. Molecules 2022;27. [PMID: 36500587 DOI: 10.3390/molecules27238495] [Reference Citation Analysis]
3 Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022;8:706. [DOI: 10.3390/gels8110706] [Reference Citation Analysis]
4 Komuro H, Aminova S, Lauro K, Harada M. Advances of engineered extracellular vesicles-based therapeutics strategy. Science and Technology of Advanced Materials. [DOI: 10.1080/14686996.2022.2133342] [Reference Citation Analysis]
5 Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022;350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Reference Citation Analysis]
6 Alharbi N, Skwarczynski M, Toth I. The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnol Adv 2022;60:108029. [PMID: 36028180 DOI: 10.1016/j.biotechadv.2022.108029] [Reference Citation Analysis]
7 Pal VK, Roy S. Bioactive Peptide Nano-assemblies with pH-Triggered Shape Transformation for Antibacterial Therapy. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03250] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Chen Y, Tao K, Ji W, Kumar VB, Rencus-lazar S, Gazit E. Histidine as a key modulator of molecular self-assembly: Peptide-based supramolecular materials inspired by biological systems. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.08.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Mosseri A, Sancho‐albero M, Leone M, Nava D, Secundo F, Maggioni D, De Cola L, Romanelli A. Chiral Fibers Formation Upon Assembly of Tetraphenylalanine Peptide Conjugated to a PNA Dimer. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202200693] [Reference Citation Analysis]
10 Saji VS. Supramolecular organic nanotubes for drug delivery. Materials Today Advances 2022;14:100239. [DOI: 10.1016/j.mtadv.2022.100239] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Sis MJ, Ye Z, La Costa K, Webber MJ. Energy Landscapes of Supramolecular Peptide-Drug Conjugates Directed by Linker Selection and Drug Topology. ACS Nano 2022. [PMID: 35639629 DOI: 10.1021/acsnano.2c02804] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022:S0165-6147(22)00053-0. [PMID: 35459589 DOI: 10.1016/j.tips.2022.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022;:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
14 Zhang T, Ouyang X, Gou S, Zhang Y, Yan N, Chang L, Li B, Zhang F, Liu H, Ni J. Novel Synovial Targeting Peptide-Sinomenine Conjugates as a Potential Strategy for the Treatment of Rheumatoid Arthritis. Int J Pharm 2022;:121628. [PMID: 35245636 DOI: 10.1016/j.ijpharm.2022.121628] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022;140:43-75. [PMID: 34710626 DOI: 10.1016/j.actbio.2021.10.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
16 Schiattarella C, Diaferia C, Gallo E, Della Ventura B, Morelli G, Vitagliano L, Velotta R, Accardo A. Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends. Sci Rep 2022;12:759. [PMID: 35031624 DOI: 10.1038/s41598-021-04394-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Abraham BL, Mensah SG, Gwinnell BR, Nilsson BL. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives. Soft Matter. [DOI: 10.1039/d2sm00713d] [Reference Citation Analysis]
18 Osipova O, Zakharova N, Pyankov I, Egorova A, Kislova A, Lavrentieva A, Kiselev A, Tennikova T, Korzhikova-vlakh E. Amphiphilic pH-Sensitive polypeptides for siRNA delivery. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103135] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Zhang L, Tian Y, Li M, Wang M, Wu S, Jiang Z, Wang Q, Wang W. Peptide nano ‘bead-grafting’ for SDT-facilitated immune checkpoints blocking. Chem Sci 2022. [DOI: 10.1039/d2sc02728c] [Reference Citation Analysis]
20 Ghosh U, Ghosh G. Supramolecular Self-Assembled Peptide-Based Nanostructures and Their Applications in Biomedicine. Pharmaceutical Applications of Supramolecules 2022. [DOI: 10.1007/978-3-031-21900-9_10] [Reference Citation Analysis]
21 Solanki A, Thakore S. Self-assembled nanomaterials for drug delivery. Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine 2022. [DOI: 10.1016/b978-0-323-90984-6.00013-1] [Reference Citation Analysis]
22 Misra C, Paul RK, Thotakura N, Raza K. Biodegradable self-assembled nanocarriers as the drug delivery vehicles. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00007-7] [Reference Citation Analysis]
23 Das S, Das D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front Chem 2021;9:770102. [PMID: 34869218 DOI: 10.3389/fchem.2021.770102] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
24 Chen S, Liu Y, Liang R, Hong G, An J, Peng X, Zheng W, Song F. Self-assembly of amphiphilic peptides to construct activatable nanophotosensitizers for theranostic photodynamic therapy. Chinese Chemical Letters 2021;32:3903-6. [DOI: 10.1016/j.cclet.2021.06.041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
25 Hiew SH, Wang JK, Koh K, Yang H, Bacha A, Lin J, Yip YS, Vos MIG, Chen L, Sobota RM, Tan NS, Tay CY, Miserez A. Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics. Acta Biomater 2021;136:111-23. [PMID: 34551327 DOI: 10.1016/j.actbio.2021.09.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Wang C, Fu L, Hu Z, Zhong Y. A mini-review on peptide-based self-assemblies and their biological applications. Nanotechnology 2021;33. [PMID: 34649227 DOI: 10.1088/1361-6528/ac2fe3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Diaferia C, Schiattarella C, Gallo E, Della Ventura B, Morelli G, Velotta R, Vitagliano L, Accardo A. Fluorescence Emission of Self-assembling Amyloid-like Peptides: Solution versus Solid State. Chemphyschem 2021;22:2215-21. [PMID: 34496136 DOI: 10.1002/cphc.202100570] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Yu S, Xian S, Ye Z, Pramudya I, Webber MJ. Glucose-Fueled Peptide Assembly: Glucagon Delivery via Enzymatic Actuation. J Am Chem Soc 2021;143:12578-89. [PMID: 34280305 DOI: 10.1021/jacs.1c04570] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
29 Sangji MH, Sai H, Chin SM, Lee SR, R Sasselli I, Palmer LC, Stupp SI. Supramolecular Interactions and Morphology of Self-Assembling Peptide Amphiphile Nanostructures. Nano Lett 2021;21:6146-55. [PMID: 34259001 DOI: 10.1021/acs.nanolett.1c01737] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
30 Babi J, Zhu L, Lin A, Uva A, El‐haddad H, Peloewetse A, Tran H. Self‐assembled free‐floating nanomaterials from sequence‐defined polymers. Journal of Polymer Science 2021;59:2378-404. [DOI: 10.1002/pol.20210366] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zuo R, Liu R, Olguin J, Hudalla GA. Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide. J Phys Chem B 2021;125:6559-71. [PMID: 34128680 DOI: 10.1021/acs.jpcb.1c02083] [Reference Citation Analysis]
32 Wang L, Ji X, Guo D, Shi C, Luo J. Facial Solid-Phase Synthesis of Well-Defined Zwitterionic Amphiphiles for Enhanced Anticancer Drug Delivery. Mol Pharm 2021;18:2349-59. [PMID: 33983742 DOI: 10.1021/acs.molpharmaceut.1c00163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021;172:275-95. [PMID: 33450330 DOI: 10.1016/j.addr.2021.01.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
34 Xian S, Webber MJ. Temperature-responsive supramolecular hydrogels. J Mater Chem B 2020;8:9197-211. [PMID: 32924052 DOI: 10.1039/d0tb01814g] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 18.0] [Reference Citation Analysis]
35 Abraham BL, Toriki ES, Tucker NJ, Nilsson BL. Electrostatic interactions regulate the release of small molecules from supramolecular hydrogels. J Mater Chem B 2020;8:6366-77. [PMID: 32596699 DOI: 10.1039/d0tb01157f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
36 Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021;16:032005. [DOI: 10.1088/1748-605x/abe35a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
37 Achilli S, Berthet N, Renaudet O. Antibody recruiting molecules (ARMs): synthetic immunotherapeutics to fight cancer. RSC Chem Biol 2021;2:713-24. [PMID: 34212148 DOI: 10.1039/d1cb00007a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
38 Zhang Y, Huang Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front Chem 2020;8:615665. [PMID: 33614595 DOI: 10.3389/fchem.2020.615665] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 11.5] [Reference Citation Analysis]
39 Raspa A, Carminati L, Pugliese R, Fontana F, Gelain F. Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries. Journal of Controlled Release 2021;330:1208-19. [DOI: 10.1016/j.jconrel.2020.11.027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
40 Wen Z, Zhan J, Li H, Xu G, Ma S, Zhang J, Li Z, Ou C, Yang Z, Cai Y, Chen M. Dual-ligand supramolecular nanofibers inspired by the renin-angiotensin system for the targeting and synergistic therapy of myocardial infarction. Theranostics 2021;11:3725-41. [PMID: 33664858 DOI: 10.7150/thno.53644] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
41 Diaferia C, Rosa E, Accardo A, Morelli G. Peptide-based hydrogels as delivery systems for doxorubicin. J Pept Sci 2021;:e3301. [PMID: 33491262 DOI: 10.1002/psc.3301] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
42 Kurbasic M, Parisi E, Garcia AM, Marchesan S. Self-Assembling, Ultrashort Peptide Gels as Antimicrobial Biomaterials. Curr Top Med Chem 2020;20:1300-9. [PMID: 32178611 DOI: 10.2174/1568026620666200316150221] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
43 Mirzababaei M, Larijani K, Hashemi-Moghaddam H, Mirjafary Z, Madanchi H. In Vitro Targeting of NL2 Peptide Bounded on Poly L-DOPA Coated Graphene Quantum Dot. J Fluoresc 2021;31:279-88. [PMID: 33387213 DOI: 10.1007/s10895-020-02660-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
44 Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021;10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
45 Chowdhuri S, Saha A, Pramanik B, Das S, Dowari P, Ukil A, Das D. Smart Thixotropic Hydrogels by Disulfide-Linked Short Peptides for Effective Three-Dimensional Cell Proliferation. Langmuir 2020;36:15450-62. [PMID: 33306395 DOI: 10.1021/acs.langmuir.0c03324] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
46 Lin K, Ma Z, Li J, Tang M, Lindstrom A, Ramachandran M, Zhu S, Lin T, Zhang L, Li Y. Single Small Molecule‐Assembled Mitochondria Targeting Nanofibers for Enhanced Photodynamic Cancer Therapy In Vivo. Adv Funct Mater 2021;31:2008460. [DOI: 10.1002/adfm.202008460] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
47 Quigley E, Johnson J, Liyanage W, Nilsson BL. Impact of gelation method on thixotropic properties of phenylalanine-derived supramolecular hydrogels. Soft Matter 2020;16:10158-68. [PMID: 33035281 DOI: 10.1039/d0sm01217c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
48 Abudula T, Bhatt K, Eggermont LJ, O'Hare N, Memic A, Bencherif SA. Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Front Chem 2020;8:598160. [PMID: 33195107 DOI: 10.3389/fchem.2020.598160] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
49 Wang J, Wang C, Ge Y, Sun Y, Wang D, Xu H. Self‐assembly of hairpin peptides mediated by Cu( II ) ion: Effect of amino acid sequence. Peptide Science 2021;113. [DOI: 10.1002/pep2.24208] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
50 Wang F, Su H, Lin R, Chakroun RW, Monroe MK, Wang Z, Porter M, Cui H. Supramolecular Tubustecan Hydrogel as Chemotherapeutic Carrier to Improve Tumor Penetration and Local Treatment Efficacy. ACS Nano 2020;14:10083-94. [PMID: 32806082 DOI: 10.1021/acsnano.0c03286] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
51 Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020;8:504. [PMID: 32548101 DOI: 10.3389/fbioe.2020.00504] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
52 Sun B, Ariawan AD, Warren H, Goodchild SC, In Het Panhuis M, Ittner LM, Martin AD. Programmable enzymatic oxidation of tyrosine-lysine tetrapeptides. J Mater Chem B 2020;8:3104-12. [PMID: 32207762 DOI: 10.1039/d0tb00250j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
53 Dhandapani R, Manigandan A, Sethuraman S, Subramanian A. Composite nanofiber matrices for biomedical applications. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00011-5] [Reference Citation Analysis]
54 Franks SJ, Firipis K, Ferreira R, Hannan KM, Williams RJ, Hannan RD, Nisbet DR. Harnessing the self-assembly of peptides for the targeted delivery of anti-cancer agents. Mater Horiz 2020;7:1996-2010. [DOI: 10.1039/d0mh00398k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]