BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rinken A, Lavogina D, Kopanchuk S. Assays with Detection of Fluorescence Anisotropy: Challenges and Possibilities for Characterizing Ligand Binding to GPCRs. Trends in Pharmacological Sciences 2018;39:187-99. [DOI: 10.1016/j.tips.2017.10.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Tang H, Chen W, Zhang J. Nanomaterials Used in Fluorescence Polarization Based Biosensors. IJMS 2022;23:8625. [DOI: 10.3390/ijms23158625] [Reference Citation Analysis]
2 Tahk M, Torp J, Ali MAS, Fishman D, Parts L, Grätz L, Müller C, Keller M, Veiksina S, Laasfeld T, Rinken A. Live-cell microscopy or fluorescence anisotropy with budded baculoviruses—which way to go with measuring ligand binding to M 4 muscarinic receptors? Open Biol 2022;12:220019. [DOI: 10.1098/rsob.220019] [Reference Citation Analysis]
3 Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y1 Receptor. J Med Chem 2022. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Reference Citation Analysis]
4 Lingasamy P, Põšnograjeva K, Kopanchuk S, Tobi A, Rinken A, General IJ, Asciutto EK, Teesalu T. PL1 Peptide Engages Acidic Surfaces on Tumor-Associated Fibronectin and Tenascin Isoforms to Trigger Cellular Uptake. Pharmaceutics 2021;13:1998. [PMID: 34959279 DOI: 10.3390/pharmaceutics13121998] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Laasfeld T, Ehrminger R, Tahk MJ, Veiksina S, Kõlvart KR, Min M, Kopanchuk S, Rinken A. Budded baculoviruses as a receptor display system to quantify ligand binding with TIRF microscopy. Nanoscale 2021;13:2436-47. [PMID: 33464268 DOI: 10.1039/d0nr06737g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Koretz KS, McGraw CE, Stradley S, Elbaradei A, Malmstadt N, Robinson AS. Characterization of binding kinetics of A2AR to Gαs protein by surface plasmon resonance. Biophys J 2021;120:1641-9. [PMID: 33675761 DOI: 10.1016/j.bpj.2021.02.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Grätz L, Laasfeld T, Allikalt A, Gruber CG, Pegoli A, Tahk MJ, Tsernant ML, Keller M, Rinken A. BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M2 muscarinic acetylcholine receptors. Biochim Biophys Acta Mol Cell Res 2021;1868:118930. [PMID: 33347921 DOI: 10.1016/j.bbamcr.2020.118930] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Allikalt A, Purkayastha N, Flad K, Schmidt MF, Tabor A, Gmeiner P, Hübner H, Weikert D. Fluorescent ligands for dopamine D2/D3 receptors. Sci Rep 2020;10:21842. [PMID: 33318558 DOI: 10.1038/s41598-020-78827-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
9 Fan YL, Liu ZY, Zeng YM, Huang LY, Li Z, Zhang ZL, Pang DW, Tian ZQ. A near-infrared-II fluorescence anisotropy strategy for separation-free detection of adenosine triphosphate in complex media. Talanta 2021;223:121721. [PMID: 33303167 DOI: 10.1016/j.talanta.2020.121721] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Allikalt A, Laasfeld T, Ilisson M, Kopanchuk S, Rinken A. Quantitative analysis of fluorescent ligand binding to dopamine D3 receptors using live-cell microscopy. FEBS J 2021;288:1514-32. [PMID: 32783364 DOI: 10.1111/febs.15519] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
11 Biselli S, Alencastre I, Tropmann K, Erdmann D, Chen M, Littmann T, Maia AF, Gomez-Lazaro M, Tanaka M, Ozawa T, Keller M, Lamghari M, Buschauer A, Bernhardt G. Fluorescent H2 Receptor Squaramide-Type Antagonists: Synthesis, Characterization, and Applications. ACS Med Chem Lett 2020;11:1521-8. [PMID: 32832018 DOI: 10.1021/acsmedchemlett.0c00033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Gruber CG, Pegoli A, Müller C, Grätz L, She X, Keller M. Differently fluorescence-labelled dibenzodiazepinone-type muscarinic acetylcholine receptor ligands with high M2R affinity. RSC Med Chem 2020;11:823-32. [PMID: 33479678 DOI: 10.1039/d0md00137f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
13 She X, Pegoli A, Gruber CG, Wifling D, Carpenter J, Hübner H, Chen M, Wan J, Bernhardt G, Gmeiner P, Holliday ND, Keller M. Red-Emitting Dibenzodiazepinone Derivatives as Fluorescent Dualsteric Probes for the Muscarinic Acetylcholine M 2 Receptor. J Med Chem 2020;63:4133-54. [DOI: 10.1021/acs.jmedchem.9b02172] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
14 Keller M, Mahuroof SA, Hong Yee V, Carpenter J, Schindler L, Littmann T, Pegoli A, Hübner H, Bernhardt G, Gmeiner P, Holliday ND. Fluorescence Labeling of Neurotensin(8-13) via Arginine Residues Gives Molecular Tools with High Receptor Affinity. ACS Med Chem Lett 2020;11:16-22. [PMID: 31938457 DOI: 10.1021/acsmedchemlett.9b00462] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
15 Link R, Veiksina S, Tahk MJ, Laasfeld T, Paiste P, Kopanchuk S, Rinken A. The constitutive activity of melanocortin-4 receptors in cAMP pathway is allosterically modulated by zinc and copper ions. J Neurochem 2020;153:346-61. [PMID: 31792980 DOI: 10.1111/jnc.14933] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
16 Calmet P, Cullin C, Cortès S, Vang M, Caudy N, Baccouch R, Dessolin J, Maamar NT, Lecomte S, Tillier B, Alves ID. Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J 2020;287:2367-85. [PMID: 31738467 DOI: 10.1111/febs.15145] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
17 Uri A, Nonga OE. What is the current value of fluorescence polarization assays in small molecule screening? Expert Opinion on Drug Discovery 2020;15:131-3. [DOI: 10.1080/17460441.2020.1702966] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
18 Viirlaid E, Ilisson M, Kopanchuk S, Mäeorg U, Rinken A, Rinken T. Immunoassay for rapid on-site detection of glyphosate herbicide. Environ Monit Assess 2019;191. [DOI: 10.1007/s10661-019-7657-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
19 Lopez A, Liu J. Fluorescence Polarization for Probing DNA Adsorption by Nanomaterials and Fluorophore/DNA Interactions. Langmuir 2019;35:9954-61. [DOI: 10.1021/acs.langmuir.9b01678] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
20 Tonge PJ. Quantifying the Interactions between Biomolecules: Guidelines for Assay Design and Data Analysis. ACS Infect Dis 2019;5:796-808. [PMID: 30860805 DOI: 10.1021/acsinfecdis.9b00012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
21 Allikalt A, Kopanchuk S, Rinken A. Implementation of fluorescence anisotropy-based assay for the characterization of ligand binding to dopamine D1 receptors. European Journal of Pharmacology 2018;839:40-6. [DOI: 10.1016/j.ejphar.2018.09.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]