BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The Multifaceted Roles of KCC2 in Cortical Development. Trends Neurosci 2021;44:378-92. [PMID: 33640193 DOI: 10.1016/j.tins.2021.01.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023;103:1095-135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Jarvis R, Josephine Ng SF, Nathanson AJ, Cardarelli RA, Abiraman K, Wade F, Evans-Strong A, Fernandez-Campa MP, Deeb TZ, Smalley JL, Jamier T, Gurrell IK, McWilliams L, Kawatkar A, Conway LC, Wang Q, Burli RW, Brandon NJ, Chessell IP, Goldman AJ, Maguire JL, Moss SJ. Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice. Cell Rep Med 2023;4:100957. [PMID: 36889319 DOI: 10.1016/j.xcrm.2023.100957] [Reference Citation Analysis]
3 Huang Y, Wang Q, Peng Y, Du W, Wang Q, Qi J, Hao Z, Wang Y. Spatiotemporal expression patterns of genes coding for plasmalemmal chloride transporters and channels in neurological diseases. Mol Brain 2023;16:30. [PMID: 36934242 DOI: 10.1186/s13041-023-01018-w] [Reference Citation Analysis]
4 Gigliucci V, Busnelli M, Santini F, Paolini C, Bertoni A, Schaller F, Muscatelli F, Chini B. Oxytocin receptors in the Magel2 mouse model of autism: Specific region, age, sex and oxytocin treatment effects. Front Neurosci 2023;17. [DOI: 10.3389/fnins.2023.1026939] [Reference Citation Analysis]
5 Magloire V, Savtchenko LP, Jensen TP, Sylantyev S, Kopach O, Cole N, Tyurikova O, Kullmann DM, Walker MC, Marvin JS, Looger LL, Hasseman JP, Kolb I, Pavlov I, Rusakov DA. Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network. Curr Biol 2023:S0960-9822(23)00191-4. [PMID: 36921605 DOI: 10.1016/j.cub.2023.02.051] [Reference Citation Analysis]
6 Glanz R, Sokoloff G, Blumberg MS. Cortical Representation of Movement Across the Developmental Transition to Continuous Neural Activity. bioRxiv 2023:2023. [PMID: 36711887 DOI: 10.1101/2023.01.22.525085] [Reference Citation Analysis]
7 Tong Q, Qin W, Li ZH, Liu C, Wang ZC, Chu Y, Xu XD. SLC12A5 promotes hepatocellular carcinoma growth and ferroptosis resistance by inducing ER stress and cystine transport changes. Cancer Med 2023. [PMID: 36645171 DOI: 10.1002/cam4.5605] [Reference Citation Analysis]
8 Yuan S, He SH, Li LY, Xi S, Weng H, Zhang JH, Wang DQ, Guo MM, Zhang H, Wang SY, Ming DJ, Liu MY, Hu H, Zeng XT. A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m(6)A reader YTHDC1. Cell Death Dis 2023;14:7. [PMID: 36609444 DOI: 10.1038/s41419-022-05544-8] [Reference Citation Analysis]
9 Kurki SN, Uvarov P, Pospelov AS, Trontti K, Hübner AK, Srinivasan R, Watanabe M, Hovatta I, Hübner CA, Kaila K, Virtanen MA. Expression patterns of NKCC1 in neurons and non-neuronal cells during cortico-hippocampal development. Cerebral Cortex 2022. [DOI: 10.1093/cercor/bhac470] [Reference Citation Analysis]
10 Litwa K. Shared mechanisms of neural circuit disruption in tuberous sclerosis across lifespan: Bridging neurodevelopmental and neurodegenerative pathology. Front Genet 2022;13:997461. [PMID: 36506334 DOI: 10.3389/fgene.2022.997461] [Reference Citation Analysis]
11 Simonnet C, Sinha M, Goutierre M, Moutkine I, Daumas S, Poncer JC. Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory. Neuropsychopharmacology 2022. [PMID: 36302847 DOI: 10.1038/s41386-022-01480-5] [Reference Citation Analysis]
12 Jones EF, Butler MG, Trendafilova D, Mendez MS, Jernigan LA, Gahtan E, Steele J. In vivo tracking of KCC2b expression during early brain development. J Comp Neurol 2022. [PMID: 36217249 DOI: 10.1002/cne.25411] [Reference Citation Analysis]
13 Hudson KE, Grau JW. Ionic Plasticity: Common Mechanistic Underpinnings of Pathology in Spinal Cord Injury and the Brain. Cells 2022;11:2910. [PMID: 36139484 DOI: 10.3390/cells11182910] [Reference Citation Analysis]
14 Zhang D, Yang Y, Yang Y, Liu J, Zhu T, Huang H, Zhou C. Severe inflammation in new-borns induces long-term cognitive impairment by activation of IL-1β/KCC2 signaling during early development. BMC Med 2022;20:235. [PMID: 35883093 DOI: 10.1186/s12916-022-02434-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Hartmann A, Nothwang HG. NKCC1 and KCC2: Structural insights into phospho-regulation. Front Mol Neurosci 2022;15:964488. [DOI: 10.3389/fnmol.2022.964488] [Reference Citation Analysis]
16 Belperio G, Corso C, Duarte CB, Mele M. Molecular Mechanisms of Epilepsy: The Role of the Chloride Transporter KCC2. J Mol Neurosci 2022. [PMID: 35819636 DOI: 10.1007/s12031-022-02041-7] [Reference Citation Analysis]
17 Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022;14:911020. [PMID: 35663370 DOI: 10.3389/fnsyn.2022.911020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Burman RJ, Rosch RE, Wilmshurst JM, Sen A, Ramantani G, Akerman CJ, Raimondo JV. Why won't it stop? The dynamics of benzodiazepine resistance in status epilepticus. Nat Rev Neurol 2022. [PMID: 35538233 DOI: 10.1038/s41582-022-00664-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Barbato C, Frisone P, Braccini L, D’aguanno S, Pieroni L, Ciotti MT, Catalanotto C, Cogoni C, Ruberti F. Silencing of Ago-2 Interacting Protein SERBP1 Relieves KCC2 Repression by miR-92 in Neurons. Cells 2022;11:1052. [DOI: 10.3390/cells11061052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022;15:826427. [PMID: 35370549 DOI: 10.3389/fnmol.2022.826427] [Reference Citation Analysis]
21 Janach GMS, Böhm M, Döhne N, Kim HR, Rosário M, Strauss U. Interferon-γ enhances neocortical synaptic inhibition by promoting membrane association and phosphorylation of GABA(A) receptors in a protein kinase C-dependent manner. Brain Behav Immun 2022;101:153-64. [PMID: 34998939 DOI: 10.1016/j.bbi.2022.01.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Simonnet C, Sinha M, Goutierre M, Moutkine I, Daumas S, Poncer JC. Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory.. [DOI: 10.1101/2022.02.18.481031] [Reference Citation Analysis]
23 Sebastião AM. A maestro role of adenosine A2A receptors in GABAergic synapses stabilization during postnatal neuronal maturation. Purinergic Signal 2022. [PMID: 35119605 DOI: 10.1007/s11302-022-09845-7] [Reference Citation Analysis]
24 Fernando MB, Brennand KJ. Quickly moving too slowly: Interneuron migration in Timothy Syndrome. Cell Stem Cell 2022;29:181-3. [PMID: 35120616 DOI: 10.1016/j.stem.2022.01.004] [Reference Citation Analysis]
25 Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022;15:817013. [DOI: 10.3389/fncel.2021.817013] [Reference Citation Analysis]
26 Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022;15:813441. [DOI: 10.3389/fncel.2021.813441] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022;15:814012. [DOI: 10.3389/fncel.2021.814012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Hamze M, Medina I, Delmotte Q, Porcher C. Contribution of Smoothened Receptor Signaling in GABAergic Neurotransmission and Chloride Homeostasis in the Developing Rodent Brain. Front Physiol 2021;12:798066. [PMID: 34955901 DOI: 10.3389/fphys.2021.798066] [Reference Citation Analysis]
29 Lopez-sola E, Sanchez-todo R, Lleal È, Köksal-ersöz E, Yochum M, Makhalova J, Mercadal B, Guasch-morgades M, Salvador R, Lozano-soldevilla D, Modolo J, Bartolomei F, Wendling F, Benquet P, Ruffini G. A personalizable autonomous neural mass model of epileptic seizures.. [DOI: 10.1101/2021.12.24.474090] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Löscher W, Kaila K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 2021;:108910. [PMID: 34883135 DOI: 10.1016/j.neuropharm.2021.108910] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
31 Ichise E, Chiyonobu T, Ishikawa M, Tanaka Y, Shibata M, Tozawa T, Taura Y, Yamashita S, Yoshida M, Morimoto M, Higurashi N, Yamamoto T, Okano H, Hirose S. Impaired neuronal activity and differential gene expression in STXBP1 encephalopathy patient iPSC-derived GABAergic neurons. Hum Mol Genet 2021;30:1337-48. [PMID: 33961044 DOI: 10.1093/hmg/ddab113] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Johne M, Käufer C, Römermann K, Gailus B, Gericke B, Löscher W. A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia 2021;62:1460-71. [PMID: 33955541 DOI: 10.1111/epi.16912] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
33 Löscher W, Kaila K. Reply to the commentary by Ben-Ari and Delpire: Bumetanide and neonatal seizures: Fiction versus reality. Epilepsia 2021;62:941-6. [PMID: 33764535 DOI: 10.1111/epi.16866] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
34 Magloire V, Savtchenko LP, Sylantyev S, Jensen TP, Cole N, Marvin JS, Looger LL, Kullmann DM, Walker MC, Pavlov I, Rusakov DA. Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network.. [DOI: 10.1101/2021.03.25.437016] [Reference Citation Analysis]
35 Belaïdouni Y, Diabira D, Zhang J, Graziano JC, Bader F, Montheil A, Menuet C, Wayman GA, Gaiarsa JL. The Chloride Homeostasis of CA3 Hippocampal Neurons Is Not Altered in Fully Symptomatic Mepc2-null Mice. Front Cell Neurosci 2021;15:724976. [PMID: 34602980 DOI: 10.3389/fncel.2021.724976] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]