BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wirth B. Spinal Muscular Atrophy: In the Challenge Lies a Solution. Trends Neurosci 2021;44:306-22. [PMID: 33423791 DOI: 10.1016/j.tins.2020.11.009] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 40.0] [Reference Citation Analysis]
Number Citing Articles
1 Delers P, Sapaly D, Salman B, De Waard S, De Waard M, Lefebvre S. A link between agrin signalling and Cav3.2 at the neuromuscular junction in spinal muscular atrophy. Sci Rep 2022;12:18960. [DOI: 10.1038/s41598-022-23703-x] [Reference Citation Analysis]
2 Buettner JM, Sowoidnich L, Gerstner F, Blanco-redondo B, Hallermann S, Simon CM. p53-dependent c-Fos expression is a marker but not executor for motor neuron death in spinal muscular atrophy mouse models. Front Cell Neurosci 2022;16. [DOI: 10.3389/fncel.2022.1038276] [Reference Citation Analysis]
3 Cuartas J, Gangwani L. Zinc finger protein ZPR1: promising survival motor neuron protein-dependent modifier for the rescue of spinal muscular atrophy. Neural Regen Res 2022;17:2225-7. [PMID: 35259840 DOI: 10.4103/1673-5374.335798] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Vezain M, Thauvin-Robinet C, Vial Y, Coutant S, Drunat S, Urtizberea JA, Rolland A, Jacquin-Piques A, Fehrenbach S, Nicolas G, Lecoquierre F, Saugier-Veber P. Retrotransposon insertion as a novel mutational cause of spinal muscular atrophy. Hum Genet 2022. [PMID: 36138164 DOI: 10.1007/s00439-022-02473-6] [Reference Citation Analysis]
5 Zilio E, Piano V, Wirth B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2022;23:10878. [PMID: 36142791 DOI: 10.3390/ijms231810878] [Reference Citation Analysis]
6 Sun J, Qiu J, Yang Q, Ju Q, Qu R, Wang X, Wu L, Xing L. Single-cell RNA sequencing reveals dysregulation of spinal cord cell types in a severe spinal muscular atrophy mouse model. PLoS Genet 2022;18:e1010392. [DOI: 10.1371/journal.pgen.1010392] [Reference Citation Analysis]
7 Long Q, Feng Y, Chen F, Wang W, Ma M, Mao S. Association between serum zinc level and lipid profiles in children with spinal muscular atrophy. Front Nutr 2022;9:960006. [PMID: 36046135 DOI: 10.3389/fnut.2022.960006] [Reference Citation Analysis]
8 Sawada T, Kido J, Sugawara K, Yoshida S, Ozasa S, Nomura K, Okada K, Fujiyama N, Nakamura K. Newborn screening for spinal muscular atrophy in Japan: One year of experience. Mol Genet Metab Rep 2022;32:100908. [PMID: 35942129 DOI: 10.1016/j.ymgmr.2022.100908] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Detering NT, Schüning T, Hensel N, Claus P. The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci 2022;79:497. [PMID: 36006469 DOI: 10.1007/s00018-022-04522-9] [Reference Citation Analysis]
10 Qiu J, Wu L, Qu R, Jiang T, Bai J, Sheng L, Feng P, Sun J. History of development of the life-saving drug “Nusinersen” in spinal muscular atrophy. Front Cell Neurosci 2022;16:942976. [DOI: 10.3389/fncel.2022.942976] [Reference Citation Analysis]
11 Bonanno S, Cavalcante P, Salvi E, Giagnorio E, Malacarne C, Cattaneo M, Andreetta F, Venerando A, Pensato V, Gellera C, Zanin R, Arnoldi MT, Dosi C, Mantegazza R, Masson R, Maggi L, Marcuzzo S. Identification of a cytokine profile in serum and cerebrospinal fluid of pediatric and adult spinal muscular atrophy patients and its modulation upon nusinersen treatment. Front Cell Neurosci 2022;16:982760. [DOI: 10.3389/fncel.2022.982760] [Reference Citation Analysis]
12 Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-Ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Kobin MA, Tartaglia GG, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Schiavi ED, Gatti M, Artandi SE, Raffa GD. TGS1 impacts snRNA 3'-end processing, ameliorates survival motor neuron-dependent neurological phenotypes in vivo and prevents neurodegeneration. Nucleic Acids Res 2022:gkac659. [PMID: 35947650 DOI: 10.1093/nar/gkac659] [Reference Citation Analysis]
13 Mercuri E, Sumner CJ, Muntoni F, Darras BT, Finkel RS. Spinal muscular atrophy. Nat Rev Dis Primers 2022;8:52. [PMID: 35927425 DOI: 10.1038/s41572-022-00380-8] [Reference Citation Analysis]
14 Blaschek A, Kölbel H, Schwartz O, Köhler C, Gläser D, Eggermann K, Hannibal I, Schara-schmidt U, Müller-felber W, Vill K. Newborn Screening for SMA – Can a Wait-and-See Strategy be Responsibly Justified in Patients With Four SMN2 Copies? JND 2022. [DOI: 10.3233/jnd-221510] [Reference Citation Analysis]
15 Muinos-Bühl A, Rombo R, Janzen E, Ling KK, Hupperich K, Rigo F, Bennett CF, Wirth B. Combinatorial ASO-mediated therapy with low dose SMN and the protective modifier Chp1 is not sufficient to ameliorate SMA pathology hallmarks. Neurobiol Dis 2022;171:105795. [PMID: 35724821 DOI: 10.1016/j.nbd.2022.105795] [Reference Citation Analysis]
16 Cuartas J, Gangwani L. R-loop Mediated DNA Damage and Impaired DNA Repair in Spinal Muscular Atrophy. Front Cell Neurosci 2022;16:826608. [DOI: 10.3389/fncel.2022.826608] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Detering NT, Zambon A, Hensel N, Kothary R, Swoboda K, Gillingwater TH, Baranello G. 264th ENMC International Workshop: Multi-system involvement in Spinal Muscular Atrophy Hoofddorp, The Netherlands, November 19th – 21th 2021. Neuromuscular Disorders 2022. [DOI: 10.1016/j.nmd.2022.06.005] [Reference Citation Analysis]
18 Sun J, Qiu J, Yang Q, Ju Q, Qu R, Wang X, Wu L, Xing L. Single-cell RNA sequencing reveals dysregulation of spinal cord cell types in a severe spinal muscular atrophy mouse model.. [DOI: 10.1101/2022.05.30.493965] [Reference Citation Analysis]
19 Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. Biology 2022;11:824. [DOI: 10.3390/biology11060824] [Reference Citation Analysis]
20 Maretina MA, Kiselev AV, Ilina AV, Egorova AA, Glotov AS, Bespalova ON, Baranov VS, Kogan IY. Current Trends in the Diagnosis, Screening and Treatment of Spinal Muscular Atrophy. Annals RAMS 2022;77:87-96. [DOI: 10.15690/vramn1768] [Reference Citation Analysis]
21 Gangfuß A, Hentschel A, Heil L, Gonzalez M, Schönecker A, Depienne C, Nishimura A, Zengeler D, Kohlschmidt N, Sickmann A, Schara-schmidt U, Fürst DO, van der Ven PF, Hahn A, Roos A, Schänzer A. Proteomic and morphological insights and clinical presentation of two young patients with novel mutations of BVES (POPDC1). Molecular Genetics and Metabolism 2022. [DOI: 10.1016/j.ymgme.2022.05.005] [Reference Citation Analysis]
22 Hu Z, Chen M, Zhang C, Li Z, Feng M, Wu L, Zhou M, Liang D. Cas14a1-Mediated Nucleic Acid Diagnostics for Spinal Muscular Atrophy. Biosensors (Basel) 2022;12:268. [PMID: 35624569 DOI: 10.3390/bios12050268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 McMillan HJ, Proud CM, Farrar MA, Alexander IE, Muntoni F, Servais L. Onasemnogene abeparvovec for the treatment of spinal muscular atrophy. Expert Opin Biol Ther 2022. [PMID: 35437095 DOI: 10.1080/14712598.2022.2066471] [Reference Citation Analysis]
24 Kubinski S, Claus P. Protein Network Analysis Reveals a Functional Connectivity of Dysregulated Processes in ALS and SMA. J Exp Neurosci 2022;17:263310552210877. [DOI: 10.1177/26331055221087740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen G, Sharif B, Gerber B, Farris MS, Cowling T, Cabalteja C, Wu JW, Maturi B, Klein-Panneton K, Jean K Mah. Epidemiology, healthcare resource utilization and healthcare costs for spinal muscular atrophy in Alberta, Canada. J Med Econ 2021;24:51-9. [PMID: 34906030 DOI: 10.1080/13696998.2021.2013676] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Sutherland CS, Hudson P, Mitchell S, Paracha N. Systematic Literature Review to Identify Utility Values in Patients with Spinal Muscular Atrophy (SMA) and Their Caregivers. Pharmacoeconomics 2021. [PMID: 34907515 DOI: 10.1007/s40273-021-01115-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Buettner JM, Sime Longang JK, Gerstner F, Apel KS, Blanco-Redondo B, Sowoidnich L, Janzen E, Langenhan T, Wirth B, Simon CM. Central synaptopathy is the most conserved feature of motor circuit pathology across spinal muscular atrophy mouse models. iScience 2021;24:103376. [PMID: 34825141 DOI: 10.1016/j.isci.2021.103376] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
28 Paracha N, Hudson P, Mitchell S, Sutherland CS. Systematic Literature Review to Assess the Cost and Resource Use Associated with Spinal Muscular Atrophy Management. Pharmacoeconomics 2021. [PMID: 34761360 DOI: 10.1007/s40273-021-01105-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Schloss N, Wirth B, Kruse T, Lehmann HC, Wunderlich G. Diagnostik und Therapie der spinalen Muskelatrophie (SMA) bei Erwachsenen. DGNeurologie 2021;4:501-515. [DOI: 10.1007/s42451-021-00386-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Kirschner J. Postnatal gene therapy for neuromuscular diseases - opportunities and limitations. J Perinat Med 2021;49:1011-5. [PMID: 34499826 DOI: 10.1515/jpm-2021-0435] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Paracha N, Hudson P, Mitchell S, Sutherland CS. Systematic Literature Review to Assess Economic Evaluations in Spinal Muscular Atrophy (SMA). Pharmacoeconomics 2021. [PMID: 34658008 DOI: 10.1007/s40273-021-01095-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
32 Costa-Roger M, Blasco-Pérez L, Cuscó I, Tizzano EF. The Importance of Digging into the Genetics of SMN Genes in the Therapeutic Scenario of Spinal Muscular Atrophy. Int J Mol Sci 2021;22:9029. [PMID: 34445733 DOI: 10.3390/ijms22169029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
33 Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes (SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021;22:7896. [PMID: 34360669 DOI: 10.3390/ijms22157896] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
34 Wolff L, Strathmann EA, Müller I, Mählich D, Veltman C, Niehoff A, Wirth B. Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021;78:5275-301. [PMID: 34023917 DOI: 10.1007/s00018-021-03843-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
35 Cappella M, Elouej S, Biferi MG. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Front Cell Dev Biol 2021;9:662837. [PMID: 33937264 DOI: 10.3389/fcell.2021.662837] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Müller-felber W, Vill K, Schwartz O, Blaschek A, Nennstiel U, Schara U, Hoffmann GF, Gläser D, Becker M, Röschinger W, Bernert G, Klein A, Kölbel H. Neugeborenenscreening auf spinale Muskelatrophie. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01165-1] [Reference Citation Analysis]
37 Miccio A, Antoniou P, Ciura S, Kabashi E. Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. Mol Ther 2021:S1525-0016(21)00190-8. [PMID: 33823304 DOI: 10.1016/j.ymthe.2021.04.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
38 Watson KS, Boukhloufi I, Bowerman M, Parson SH. The Relationship between Body Composition, Fatty Acid Metabolism and Diet in Spinal Muscular Atrophy. Brain Sci 2021;11:131. [PMID: 33498293 DOI: 10.3390/brainsci11020131] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
39 Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Tartaglia GG, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Schiavi ED, Gatti M, Artandi SE, Raffa GD. TGS1 controls snRNA 3’ end processing, prevents neurodegeneration and ameliorates SMN-dependent neurological phenotypes in vivo.. [DOI: 10.1101/2020.10.27.356782] [Reference Citation Analysis]