BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kalebic N, Huttner WB. Basal Progenitor Morphology and Neocortex Evolution. Trends Neurosci 2020;43:843-53. [PMID: 32828546 DOI: 10.1016/j.tins.2020.07.009] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Gkini V, Namba T. Glutaminolysis and the Control of Neural Progenitors in Neocortical Development and Evolution. Neuroscientist 2023;29:177-89. [PMID: 35057642 DOI: 10.1177/10738584211069060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
2 Kopić J, Junaković A, Salamon I, Rasin MR, Kostović I, Krsnik Ž. Early Regional Patterning in the Human Prefrontal Cortex Revealed by Laminar Dynamics of Deep Projection Neuron Markers. Cells 2023;12. [PMID: 36672166 DOI: 10.3390/cells12020231] [Reference Citation Analysis]
3 Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022;23:251. [PMID: 36474250 DOI: 10.1186/s13059-022-02821-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Damianidou E, Mouratidou L, Kyrousi C. Research models of neurodevelopmental disorders: The right model in the right place. Front Neurosci 2022;16:1031075. [DOI: 10.3389/fnins.2022.1031075] [Reference Citation Analysis]
5 Toledo VHCD, Feltrin AS, Barbosa AR, Tahira AC, Brentani H. Sex differences in gene regulatory networks during mid-gestational brain development. Front Hum Neurosci 2022;16:955607. [DOI: 10.3389/fnhum.2022.955607] [Reference Citation Analysis]
6 Anijs M, Devanna P, Vernes SC. ARHGEF39, a Gene Implicated in Developmental Language Disorder, Activates RHOA and Is Involved in Cell De-Adhesion and Neural Progenitor Cell Proliferation. Front Mol Neurosci 2022;15:941494. [DOI: 10.3389/fnmol.2022.941494] [Reference Citation Analysis]
7 Park G, Shin M, Lee W, Hotta A, Kobayashi T, Kosodo Y. Direct visualization of the transition status during neural differentiation by dual-fluorescent reporter human pluripotent stem cells. Stem Cell Reports 2022:S2213-6711(22)00360-5. [PMID: 35931075 DOI: 10.1016/j.stemcr.2022.07.001] [Reference Citation Analysis]
8 Farcy S, Albert A, Gressens P, Baffet AD, El Ghouzzi V. Cortical Organoids to Model Microcephaly. Cells 2022;11:2135. [DOI: 10.3390/cells11142135] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Allen DE, Donohue KC, Cadwell CR, Shin D, Keefe MG, Sohal VS, Nowakowski TJ. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science 2022;376:1441-6. [PMID: 35587512 DOI: 10.1126/science.abm5224] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
10 Kaluthantrige Don F, Kalebic N. Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Front Cell Dev Biol 2022;10:917166. [DOI: 10.3389/fcell.2022.917166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Nano PR, Bhaduri A. Evaluation of advances in cortical development using model systems. Dev Neurobiol 2022. [PMID: 35644985 DOI: 10.1002/dneu.22879] [Reference Citation Analysis]
12 Casas Gimeno G, Paridaen JTML. The Symmetry of Neural Stem Cell and Progenitor Divisions in the Vertebrate Brain. Front Cell Dev Biol 2022;10:885269. [DOI: 10.3389/fcell.2022.885269] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Romero DM, Poirier K, Belvindrah R, Moutkine I, Houllier A, LeMoing AG, Petit F, Boland A, Collins SC, Soiza-Reilly M, Yalcin B, Chelly J, Deleuze JF, Bahi-Buisson N, Francis F. Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development. Nat Commun 2022;13:2746. [PMID: 35585091 DOI: 10.1038/s41467-022-30443-z] [Reference Citation Analysis]
14 Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol 2022;10:892922. [DOI: 10.3389/fcell.2022.892922] [Reference Citation Analysis]
15 Romero-morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022;15:840265. [DOI: 10.3389/fnmol.2022.840265] [Reference Citation Analysis]
16 Mora-bermúdez F, Huttner WB. What Are the Human-Specific Aspects of Neocortex Development? Front Neurosci 2022;16:878950. [DOI: 10.3389/fnins.2022.878950] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Shinmyo Y, Saito K, Hamabe-Horiike T, Kameya N, Ando A, Kawasaki K, Duong TAD, Sakashita M, Roboon J, Hattori T, Kannon T, Hosomichi K, Slezak M, Holt MG, Tajima A, Hori O, Kawasaki H. Localized astrogenesis regulates gyrification of the cerebral cortex. Sci Adv 2022;8:eabi5209. [PMID: 35275722 DOI: 10.1126/sciadv.abi5209] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2021;15:817218. [PMID: 35069108 DOI: 10.3389/fnins.2021.817218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Long KR, Huttner WB. The Role of the Extracellular Matrix in Neural Progenitor Cell Proliferation and Cortical Folding During Human Neocortex Development. Front Cell Neurosci 2022;15:804649. [DOI: 10.3389/fncel.2021.804649] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Salamon I, Rasin M. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022;15:803107. [DOI: 10.3389/fnins.2021.803107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Macciardi F, Martini F. The Neanderthal brain: Biological and cognitive evolution. Updating Neanderthals 2022. [DOI: 10.1016/b978-0-12-821428-2.00008-1] [Reference Citation Analysis]
22 Shi Y, Wang M, Mi D, Lu T, Wang B, Dong H, Zhong S, Chen Y, Sun L, Zhou X, Ma Q, Liu Z, Wang W, Zhang J, Wu Q, Marín O, Wang X. Mouse and human share conserved transcriptional programs for interneuron development. Science 2021;374:eabj6641. [PMID: 34882453 DOI: 10.1126/science.abj6641] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
23 Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021;15:776809. [PMID: 34803599 DOI: 10.3389/fnins.2021.776809] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
24 Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2021:S1084-9521(21)00242-1. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Kalebic N, Namba T. Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development 2021;148:dev199417. [PMID: 34499710 DOI: 10.1242/dev.199417] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Salamon I, Palsule G, Luo X, Roque A, Tucai S, Khosla I, Volk N, Liu W, Cui H, Pozzo VD, Zalamea P, Jiao X, D'Arcangelo G, Hart RP, Rasin MR, Kiledjian M. mRNA-Decapping Associated DcpS Enzyme Controls Critical Steps of Neuronal Development. Cereb Cortex 2021:bhab302. [PMID: 34467373 DOI: 10.1093/cercor/bhab302] [Reference Citation Analysis]
27 Abbott LC, Nigussie F. Mercury Toxicity and Neurogenesis in the Mammalian Brain. Int J Mol Sci 2021;22:7520. [PMID: 34299140 DOI: 10.3390/ijms22147520] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
28 Pebworth MP, Ross J, Andrews M, Bhaduri A, Kriegstein AR. Human intermediate progenitor diversity during cortical development. Proc Natl Acad Sci U S A 2021;118:e2019415118. [PMID: 34155100 DOI: 10.1073/pnas.2019415118] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
29 Park Y, Page N, Salamon I, Li D, Rasin MR. Making sense of mRNA landscapes: Translation control in neurodevelopment. Wiley Interdiscip Rev RNA 2021;:e1674. [PMID: 34137510 DOI: 10.1002/wrna.1674] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Pinson A, Huttner WB. Neocortex expansion in development and evolution-from genes to progenitor cell biology. Curr Opin Cell Biol 2021;73:9-18. [PMID: 34098196 DOI: 10.1016/j.ceb.2021.04.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
31 Kalusa M, Heinrich MD, Sauerland C, Morawski M, Fietz SA. Developmental Differences in Neocortex Neurogenesis and Maturation Between the Altricial Dwarf Rabbit and Precocial Guinea Pig. Front Neuroanat 2021;15:678385. [PMID: 34135738 DOI: 10.3389/fnana.2021.678385] [Reference Citation Analysis]
32 Salamon I, Palsule G, Luo X, Roque A, Tucai S, Khosla I, Volk N, Liu W, Cui H, Dal Pozzo V, Zalamea P, Jiao X, D’arcangelo G, Hart RP, Rasin M, Kiledjian M. mRNA-decapping associated DcpS enzyme controls critical steps of neuronal development.. [DOI: 10.1101/2021.05.10.443481] [Reference Citation Analysis]
33 D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021;147:105055. [PMID: 33964373 DOI: 10.1016/j.neuint.2021.105055] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
34 Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021;9:661759. [PMID: 33996819 DOI: 10.3389/fcell.2021.661759] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
35 Schörnig M, Taverna E. A Closer Look to the Evolution of Neurons in Humans and Apes Using Stem-Cell-Derived Model Systems. Front Cell Dev Biol 2021;9:661113. [PMID: 33968936 DOI: 10.3389/fcell.2021.661113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Mora-Bermúdez F, Taverna E, Huttner WB. From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS J 2021. [PMID: 33638923 DOI: 10.1111/febs.15793] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
37 Kawaguchi A. Neuronal Delamination and Outer Radial Glia Generation in Neocortical Development. Front Cell Dev Biol 2020;8:623573. [PMID: 33614631 DOI: 10.3389/fcell.2020.623573] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
38 Soto-Perez J, Baumgartner M, Kanadia RN. Role of NDE1 in the Development and Evolution of the Gyrified Cortex. Front Neurosci 2020;14:617513. [PMID: 33390896 DOI: 10.3389/fnins.2020.617513] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
39 Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020;8:578341. [PMID: 33178693 DOI: 10.3389/fcell.2020.578341] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]