BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease. Trends Neurosci 2017;40:422-37. [PMID: 28578789 DOI: 10.1016/j.tins.2017.05.002] [Cited by in Crossref: 104] [Cited by in F6Publishing: 90] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023;223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Reference Citation Analysis]
2 Gangwani MR, Soto JS, Jami-Alahmadi Y, Tiwari S, Kawaguchi R, Wohlschlegel JA, Khakh BS. Neuronal and astrocytic contributions to Huntington's disease dissected with zinc finger protein transcriptional repressors. Cell Rep 2023;42:111953. [PMID: 36640336 DOI: 10.1016/j.celrep.2022.111953] [Reference Citation Analysis]
3 Abjean L, Ben Haim L, Riquelme-Perez M, Gipchtein P, Derbois C, Palomares MA, Petit F, Hérard AS, Gaillard MC, Guillermier M, Gaudin-Guérif M, Aurégan G, Sagar N, Héry C, Dufour N, Robil N, Kabani M, Melki R, De la Grange P, Bemelmans AP, Bonvento G, Deleuze JF, Hantraye P, Flament J, Bonnet E, Brohard S, Olaso R, Brouillet E, Carrillo-de Sauvage MA, Escartin C. Reactive astrocytes promote proteostasis in Huntington's disease through the JAK2-STAT3 pathway. Brain 2023;146:149-66. [PMID: 35298632 DOI: 10.1093/brain/awac068] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Reyes-Ortiz AM, Abud EM, Burns MS, Wu J, Hernandez SJ, McClure N, Wang KQ, Schulz CJ, Miramontes R, Lau A, Michael N, Miyoshi E, Van Vactor D, Reidling JC, Blurton-Jones M, Swarup V, Poon WW, Lim RG, Thompson LM. Single-nuclei transcriptome analysis of Huntington disease iPSC and mouse astrocytes implicates maturation and functional deficits. iScience 2023;26:105732. [PMID: 36590162 DOI: 10.1016/j.isci.2022.105732] [Reference Citation Analysis]
5 Andersen JV, Schousboe A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 2022. [DOI: 10.1007/s11064-022-03771-1] [Reference Citation Analysis]
6 Shiohama T, Stewart N, Nangaku M, van der Kouwe AJW, Takahashi E. Identification of association fibers using ex vivo diffusion tractography in Alexander disease brains. J Neuroimaging 2022. [PMID: 35983725 DOI: 10.1111/jon.13040] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Evans EE, Mishra V, Mallow C, Gersz EM, Balch L, Howell A, Reilly C, Smith ES, Fisher TL, Zauderer M. Semaphorin 4D is upregulated in neurons of diseased brains and triggers astrocyte reactivity. J Neuroinflammation 2022;19:200. [PMID: 35933420 DOI: 10.1186/s12974-022-02509-8] [Reference Citation Analysis]
8 Jurcau A, Jurcau MC. Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022;10:1895. [DOI: 10.3390/biomedicines10081895] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Reyes-ortiz AM, Abud EM, Burns MS, Wu J, Hernandez SJ, Geller N, Wang KQ, Schulz C, Miramontes R, Lau A, Michael N, Miyoshi E, Blurton-jones M, Van Vactor D, Reidling JC, Swarup V, Poon WW, Lim RG, Thompson LM. Integrated transcriptome analysis of Huntington’s disease iPSC-derived and mouse astrocytes implicates dysregulated synaptogenesis, actin, and astrocyte maturation.. [DOI: 10.1101/2022.07.28.501170] [Reference Citation Analysis]
10 Jurcau A. Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022;10:1432. [PMID: 35740453 DOI: 10.3390/biomedicines10061432] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Yu D, Zarate N, White A, Coates D, Tsai W, Nanclares C, Cuccu F, Yue JS, Brown TG, Mansky RH, Jiang K, Kim H, Nichols-Meade T, Larson SN, Gundry K, Zhang Y, Tomas-Zapico C, Lucas JJ, Benneyworth M, Öz G, Cvetanovic M, Araque A, Gomez-Pastor R. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in huntington's disease. Acta Neuropathol Commun 2022;10:83. [PMID: 35659303 DOI: 10.1186/s40478-022-01379-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022;137:104651. [PMID: 35367512 DOI: 10.1016/j.neubiorev.2022.104651] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022;10:1206. [PMID: 35625943 DOI: 10.3390/biomedicines10051206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wakida NM, Lau AL, Nguyen J, Cruz GMS, Fote GM, Steffan JS, Thompson LM, Berns MW. Diminished LC3-Associated Phagocytosis by Huntington's Disease Striatal Astrocytes. J Huntingtons Dis 2022;11:25-33. [PMID: 35253772 DOI: 10.3233/JHD-210502] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Sepers MD, Mackay JP, Koch E, Xiao D, Mohajerani MH, Chan AW, Smith-Dijak AI, Ramandi D, Murphy TH, Raymond LA. Altered cortical processing of sensory input in Huntington disease mouse models. Neurobiol Dis 2022;:105740. [PMID: 35460870 DOI: 10.1016/j.nbd.2022.105740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 2022. [PMID: 35173313 DOI: 10.1038/s41573-022-00390-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 18.0] [Reference Citation Analysis]
17 Joshi T, Jana NR. The Role of Glia in Huntington’s Disease. The Biology of Glial Cells: Recent Advances 2022. [DOI: 10.1007/978-981-16-8313-8_24] [Reference Citation Analysis]
18 Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022;31:9636897221105499. [PMID: 35770772 DOI: 10.1177/09636897221105499] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Barthels D, Das H. Glial Cells in Neuroinflammation in Various Disease States. Handbook of Stem Cell Therapy 2022. [DOI: 10.1007/978-981-16-6016-0_39-1] [Reference Citation Analysis]
20 Barthels D, Das H. Glial Cells in Neuroinflammation in Various Disease States. Handbook of Stem Cell Therapy 2022. [DOI: 10.1007/978-981-19-2655-6_39] [Reference Citation Analysis]
21 Tanaka K. Astroglia and Obsessive Compulsive Disorder. Adv Neurobiol 2021;26:139-49. [PMID: 34888834 DOI: 10.1007/978-3-030-77375-5_7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Wilton D, Mastro K, Heller M, Gergits F, Willing CR, Frouin A, Daggett A, Gu X, Kim A, Faull R, Jayadev S, Yednock T, Yang X, Stevens B. Microglia Mediate Early Corticostriatal Synapse Loss and Cognitive Dysfunction in Huntington’s Disease Through Complement-Dependent Mechanisms.. [DOI: 10.1101/2021.12.03.471180] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Brown TG, Thayer M, Zarate N, Gomez-pastor R. Striatal compartmentalization and clustering of different subtypes of astrocytes is altered in the zQ175 Huntington’s disease mouse model.. [DOI: 10.1101/2021.11.29.470488] [Reference Citation Analysis]
24 You H, Wu T, Du G, Huang Y, Zeng Y, Lin L, Chen D, Wu C, Li X, Burgunder J, Pei Z. Evaluation of Blood Glial Fibrillary Acidic Protein as a Potential Marker in Huntington's Disease. Front Neurol 2021;12:779890. [DOI: 10.3389/fneur.2021.779890] [Reference Citation Analysis]
25 Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021;22:12499. [PMID: 34830381 DOI: 10.3390/ijms222212499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Kaye J, Reisine T, Finkbeiner S. Huntington's disease mouse models: unraveling the pathology caused by CAG repeat expansion. Fac Rev 2021;10:77. [PMID: 34746930 DOI: 10.12703/r/10-77] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Harris KL, Mason SL, Vallin B, Barker RA. Reduced expression of dopamine D2 receptors on astrocytes in R6/1 HD mice and HD post-mortem tissue. Neurosci Lett 2021;:136289. [PMID: 34637857 DOI: 10.1016/j.neulet.2021.136289] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Stifani S. Taking Cellular Heterogeneity Into Consideration When Modeling Astrocyte Involvement in Amyotrophic Lateral Sclerosis Using Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2021;15:707861. [PMID: 34602979 DOI: 10.3389/fncel.2021.707861] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Gatto RG, Weissmann C. Preliminary examination of early neuroconnectivity features in the R6/1 mouse model of Huntington's disease by ultra-high field diffusion MRI. Neural Regen Res 2022;17:983-6. [PMID: 34558512 DOI: 10.4103/1673-5374.324831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Ohno Y, Kunisawa N, Shimizu S. Emerging Roles of Astrocyte Kir4.1 Channels in the Pathogenesis and Treatment of Brain Diseases. Int J Mol Sci 2021;22:10236. [PMID: 34638578 DOI: 10.3390/ijms221910236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Herrmann F, Hessmann M, Schaertl S, Berg-Rosseburg K, Brown CJ, Bursow G, Chiki A, Ebneth A, Gehrmann M, Hoeschen N, Hotze M, Jahn S, Johnson PD, Khetarpal V, Kiselyov A, Kottig K, Ladewig S, Lashuel H, Letschert S, Mills MR, Petersen K, Prime ME, Scheich C, Schmiedel G, Wityak J, Liu L, Dominguez C, Muñoz-Sanjuán I, Bard JA. Pharmacological characterization of mutant huntingtin aggregate-directed PET imaging tracer candidates. Sci Rep 2021;11:17977. [PMID: 34504195 DOI: 10.1038/s41598-021-97334-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
32 Sanmarco LM, Polonio CM, Wheeler MA, Quintana FJ. Functional immune cell-astrocyte interactions. J Exp Med 2021;218:e20202715. [PMID: 34292315 DOI: 10.1084/jem.20202715] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
33 Sepers MD, Mackay JP, Koch E, Xiao D, Mohajerani MH, Chan AW, Smith-dijak AI, Ramandi D, Murphy TH, Raymond LA. Altered cortical processing of sensory input in Huntington disease mouse models.. [DOI: 10.1101/2021.07.18.452688] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021;196:108719. [PMID: 34273389 DOI: 10.1016/j.neuropharm.2021.108719] [Cited by in Crossref: 44] [Cited by in F6Publishing: 54] [Article Influence: 22.0] [Reference Citation Analysis]
35 Benraiss A, Mariani JN, Osipovitch M, Cornwell A, Windrem MS, Villanueva CB, Chandler-Militello D, Goldman SA. Cell-intrinsic glial pathology is conserved across human and murine models of Huntington's disease. Cell Rep 2021;36:109308. [PMID: 34233199 DOI: 10.1016/j.celrep.2021.109308] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021;373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
37 Park HJ, Jeon J, Choi J, Kim JY, Kim HS, Huh JY, Goldman SA, Song J. Human iPSC-derived neural precursor cells differentiate into multiple cell types to delay disease progression following transplantation into YAC128 Huntington's disease mouse model. Cell Prolif 2021;54:e13082. [PMID: 34152047 DOI: 10.1111/cpr.13082] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
38 Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci 2021;15:689332. [PMID: 34211373 DOI: 10.3389/fncel.2021.689332] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
39 Bose R, Banerjee S, Dunbar GL. Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Front Cell Dev Biol 2021;9:640212. [PMID: 34041235 DOI: 10.3389/fcell.2021.640212] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
40 Abjean L, Haim LB, Riquelme-perez M, Gipchtein P, Derbois C, Palomares M, Petit F, Hérard A, Gaillard M, Guillermier M, Gaudin-guérif M, Aurégan G, Sagar N, Héry C, Dufour N, Robil N, Kabani M, Melki R, De la Grange P, Bemelmans AP, Bonvento G, Deleuze J, Hantraye P, Flament J, Bonnet E, Brohard S, Olaso R, Brouillet E, Sauvage MC, Escartin C. Reactive astrocytes promote proteostasis in Huntington’s disease through the JAK2-STAT3 pathway.. [DOI: 10.1101/2021.04.29.441924] [Reference Citation Analysis]
41 Finsterwald C, Dias S, Magistretti PJ, Lengacher S. Ganglioside GM1 Targets Astrocytes to Stimulate Cerebral Energy Metabolism. Front Pharmacol 2021;12:653842. [PMID: 33995070 DOI: 10.3389/fphar.2021.653842] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
42 Buren C, Tu G, Raymond LA. Impaired Replenishment of Cortico-Striatal Synaptic Glutamate in Huntington's Disease Mouse Model. J Huntingtons Dis 2020;9:149-61. [PMID: 32310183 DOI: 10.3233/JHD-200400] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Mancini A, Ghiglieri V, Parnetti L, Calabresi P, Di Filippo M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front Immunol 2021;12:644294. [PMID: 33953715 DOI: 10.3389/fimmu.2021.644294] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
44 Rosser AE, Busse M, Aron Badin R, Canals JM, Wheelock V, Perrier AL, Gray W, Thompson L, Goldman S. Cell Therapy for Huntington's Disease: Learning from Failure. Mov Disord 2021;36:787-8. [PMID: 33749919 DOI: 10.1002/mds.28503] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Park JH, Hayakawa K. Extracellular Mitochondria Signals in CNS Disorders. Front Cell Dev Biol 2021;9:642853. [PMID: 33748135 DOI: 10.3389/fcell.2021.642853] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
46 Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and Central Nervous System-Associated Macrophages-From Origin to Disease Modulation. Annu Rev Immunol 2021;39:251-77. [PMID: 33556248 DOI: 10.1146/annurev-immunol-093019-110159] [Cited by in Crossref: 90] [Cited by in F6Publishing: 100] [Article Influence: 45.0] [Reference Citation Analysis]
47 Qiu B, de Vries RJ, Caiazzo M. Direct Cell Reprogramming of Mouse Fibroblasts into Functional Astrocytes Using Lentiviral Overexpression of the Transcription Factors NFIA, NFIB, and SOX9. Methods Mol Biol 2021;2352:31-43. [PMID: 34324178 DOI: 10.1007/978-1-0716-1601-7_3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Birolini G, Verlengia G, Talpo F, Maniezzi C, Zentilin L, Giacca M, Conforti P, Cordiglieri C, Caccia C, Leoni V, Taroni F, Biella G, Simonato M, Cattaneo E, Valenza M. SREBP2 delivery to striatal astrocytes normalizes transcription of cholesterol biosynthesis genes and ameliorates pathological features in Huntington’s Disease.. [DOI: 10.1101/2020.11.23.393793] [Reference Citation Analysis]
49 Cepeda C, Levine MS. Synaptic Dysfunction in Huntington's Disease: Lessons from Genetic Animal Models. Neuroscientist 2020;:1073858420972662. [PMID: 33198566 DOI: 10.1177/1073858420972662] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
50 Fan C, Chen K, Zhou J, Wong PP, He D, Huang Y, Wang X, Ling T, Yang Y, Zhao H. Systematic analysis to identify transcriptome-wide dysregulation of Alzheimer's disease in genes and isoforms. Hum Genet 2021;140:609-23. [PMID: 33140241 DOI: 10.1007/s00439-020-02230-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
51 Yu D, Zarate N, White A, Coates D, Tsai W, Nanclares C, Cuccu F, Yue JS, Brown TG, Mansky R, Jiang K, Kim H, Nichols-meade T, Larson SN, Gundry K, Zhang Y, Tomas-zapico C, Lucas JJ, Benneyworth M, Öz G, Cvetanovic M, Araque A, Gomez-pastor R. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in Huntington’s disease.. [DOI: 10.1101/2020.10.29.359380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
52 Yu X, Nagai J, Marti-Solano M, Soto JS, Coppola G, Babu MM, Khakh BS. Context-Specific Striatal Astrocyte Molecular Responses Are Phenotypically Exploitable. Neuron 2020;108:1146-1162.e10. [PMID: 33086039 DOI: 10.1016/j.neuron.2020.09.021] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
53 Trujillo-Estrada L, Gomez-Arboledas A, Forner S, Martini AC, Gutierrez A, Baglietto-Vargas D, LaFerla FM. Astrocytes: From the Physiology to the Disease. Curr Alzheimer Res 2019;16:675-98. [PMID: 31470787 DOI: 10.2174/1567205016666190830110152] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
54 Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev 2020;62:101128. [PMID: 32712108 DOI: 10.1016/j.arr.2020.101128] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
55 Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019;16:957-78. [PMID: 31529216 DOI: 10.1007/s13311-019-00782-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
56 Diaz-Castro B, Gangwani MR, Yu X, Coppola G, Khakh BS. Astrocyte molecular signatures in Huntington's disease. Sci Transl Med 2019;11:eaaw8546. [PMID: 31619545 DOI: 10.1126/scitranslmed.aaw8546] [Cited by in Crossref: 85] [Cited by in F6Publishing: 84] [Article Influence: 28.3] [Reference Citation Analysis]
57 Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020;14:278. [PMID: 32973460 DOI: 10.3389/fncel.2020.00278] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
58 Veldman MB, Park CS, Eyermann CM, Zhang JY, Zuniga-Sanchez E, Hirano AA, Daigle TL, Foster NN, Zhu M, Langfelder P, Lopez IA, Brecha NC, Zipursky SL, Zeng H, Dong HW, Yang XW. Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice. Neuron 2020;108:111-127.e6. [PMID: 32795398 DOI: 10.1016/j.neuron.2020.07.019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
59 Lee H, Fenster RJ, Pineda SS, Gibbs WS, Mohammadi S, Davila-Velderrain J, Garcia FJ, Therrien M, Novis HS, Gao F, Wilkinson H, Vogt T, Kellis M, LaVoie MJ, Heiman M. Cell Type-Specific Transcriptomics Reveals that Mutant Huntingtin Leads to Mitochondrial RNA Release and Neuronal Innate Immune Activation. Neuron 2020;107:891-908.e8. [PMID: 32681824 DOI: 10.1016/j.neuron.2020.06.021] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 22.0] [Reference Citation Analysis]
60 Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020;21:E4859. [PMID: 32660023 DOI: 10.3390/ijms21144859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
61 Bono-Yagüe J, Gómez-Escribano AP, Millán JM, Vázquez-Manrique RP. Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020;9:E577. [PMID: 32630706 DOI: 10.3390/antiox9070577] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
62 Gleichman AJ, Carmichael ST. Glia in neurodegeneration: Drivers of disease or along for the ride? Neurobiol Dis 2020;142:104957. [PMID: 32512150 DOI: 10.1016/j.nbd.2020.104957] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 9.7] [Reference Citation Analysis]
63 Barbar L, Jain T, Zimmer M, Kruglikov I, Sadick JS, Wang M, Kalpana K, Rose IVL, Burstein SR, Rusielewicz T, Nijsure M, Guttenplan KA, di Domenico A, Croft G, Zhang B, Nobuta H, Hébert JM, Liddelow SA, Fossati V. CD49f Is a Novel Marker of Functional and Reactive Human iPSC-Derived Astrocytes. Neuron 2020;107:436-453.e12. [PMID: 32485136 DOI: 10.1016/j.neuron.2020.05.014] [Cited by in Crossref: 51] [Cited by in F6Publishing: 62] [Article Influence: 17.0] [Reference Citation Analysis]
64 King AC, Wood TE, Rodriguez E, Parpura V, Gray M. Differential effects of SNARE-dependent gliotransmission on behavioral phenotypes in a mouse model of Huntington's disease. Exp Neurol 2020;330:113358. [PMID: 32387649 DOI: 10.1016/j.expneurol.2020.113358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
65 Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020;9:E846. [PMID: 32244528 DOI: 10.3390/cells9040846] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
66 Blumenstock S, Dudanova I. Cortical and Striatal Circuits in Huntington's Disease. Front Neurosci 2020;14:82. [PMID: 32116525 DOI: 10.3389/fnins.2020.00082] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
67 de Majo M, Koontz M, Rowitch D, Ullian EM. An update on human astrocytes and their role in development and disease. Glia 2020;68:685-704. [PMID: 31926040 DOI: 10.1002/glia.23771] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
68 Vasudeva K, Balyan R, Munshi A. ACE-Triggered Hypertension Incites Stroke: Genetic, Molecular, and Therapeutic Aspects. Neuromolecular Med 2020;22:194-209. [PMID: 31802381 DOI: 10.1007/s12017-019-08583-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
69 Skotte NH, Andersen JV, Santos A, Aldana BI, Willert CW, Nørremølle A, Waagepetersen HS, Nielsen ML. Integrative Characterization of the R6/2 Mouse Model of Huntington's Disease Reveals Dysfunctional Astrocyte Metabolism. Cell Rep 2018;23:2211-24. [PMID: 29768217 DOI: 10.1016/j.celrep.2018.04.052] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 14.0] [Reference Citation Analysis]
70 Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 2020;122:109691. [PMID: 31786465 DOI: 10.1016/j.biopha.2019.109691] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
71 Nakamura Y, Park JH, Hayakawa K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol 2020;324:113114. [PMID: 31734316 DOI: 10.1016/j.expneurol.2019.113114] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 10.0] [Reference Citation Analysis]
72 Goodnight AV, Kremsky I, Khampang S, Jung YH, Billingsley JM, Bosinger SE, Corces VG, Chan AWS. Chromatin accessibility and transcription dynamics during in vitro astrocyte differentiation of Huntington's Disease Monkey pluripotent stem cells. Epigenetics Chromatin 2019;12:67. [PMID: 31722751 DOI: 10.1186/s13072-019-0313-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
73 Çavdar S, Kuvvet Y, Sur-erdem I, Özgür M, Onat F. Relationships between astrocytes and absence epilepsy in rat: An experimental study. Neuroscience Letters 2019;712:134518. [DOI: 10.1016/j.neulet.2019.134518] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
74 Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. The Role of Microglia and Astrocytes in Huntington's Disease. Front Mol Neurosci 2019;12:258. [PMID: 31708741 DOI: 10.3389/fnmol.2019.00258] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 18.3] [Reference Citation Analysis]
75 Wang N, Yang XW. Huntington Disease's Glial Progenitor Cells Hit the Pause Button in the Mouse Brain. Cell Stem Cell 2019;24:3-4. [PMID: 30609397 DOI: 10.1016/j.stem.2018.12.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
76 Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and Functions in Brain Pathologies. Front Pharmacol 2019;10:1114. [PMID: 31611796 DOI: 10.3389/fphar.2019.01114] [Cited by in Crossref: 108] [Cited by in F6Publishing: 121] [Article Influence: 27.0] [Reference Citation Analysis]
77 Peng J, Wu S, Guo C, Guo K, Zhang W, Liu R, Li J, Hu Z. Effect of Ibuprofen on Autophagy of Astrocytes During Pentylenetetrazol-Induced Epilepsy and its Significance: An Experimental Study. Neurochem Res 2019;44:2566-76. [PMID: 31535354 DOI: 10.1007/s11064-019-02875-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
78 Stanek LM, Bu J, Shihabuddin LS. Astrocyte transduction is required for rescue of behavioral phenotypes in the YAC128 mouse model with AAV-RNAi mediated HTT lowering therapeutics. Neurobiology of Disease 2019;129:29-37. [DOI: 10.1016/j.nbd.2019.04.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
79 Escartin C, Guillemaud O, Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019;67:2221-47. [PMID: 31429127 DOI: 10.1002/glia.23687] [Cited by in Crossref: 122] [Cited by in F6Publishing: 125] [Article Influence: 30.5] [Reference Citation Analysis]
80 Khakh BS. Astrocyte-Neuron Interactions in the Striatum: Insights on Identity, Form, and Function. Trends Neurosci 2019;42:617-30. [PMID: 31351745 DOI: 10.1016/j.tins.2019.06.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
81 Octeau JC, Chai H, Jiang R, Bonanno SL, Martin KC, Khakh BS. An Optical Neuron-Astrocyte Proximity Assay at Synaptic Distance Scales. Neuron 2018;98:49-66.e9. [PMID: 29621490 DOI: 10.1016/j.neuron.2018.03.003] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 15.8] [Reference Citation Analysis]
82 Garcia VJ, Rushton DJ, Tom CM, Allen ND, Kemp PJ, Svendsen CN, Mattis VB. Huntington's Disease Patient-Derived Astrocytes Display Electrophysiological Impairments and Reduced Neuronal Support. Front Neurosci 2019;13:669. [PMID: 31316341 DOI: 10.3389/fnins.2019.00669] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
83 Kardos J, Dobolyi Á, Szabó Z, Simon Á, Lourmet G, Palkovits M, Héja L. Molecular Plasticity of the Nucleus Accumbens Revisited-Astrocytic Waves Shall Rise. Mol Neurobiol 2019;56:7950-65. [PMID: 31134458 DOI: 10.1007/s12035-019-1641-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
84 Héja L, Simon Á, Szabó Z, Kardos J. Feedback adaptation of synaptic excitability via Glu:Na+ symport driven astrocytic GABA and Gln release. Neuropharmacology 2019;161:107629. [PMID: 31103619 DOI: 10.1016/j.neuropharm.2019.05.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
85 Ochaba J, Fote G, Kachemov M, Thein S, Yeung SY, Lau AL, Hernandez S, Lim RG, Casale M, Neel MJ, Monuki ES, Reidling J, Housman DE, Thompson LM, Steffan JS. IKKβ slows Huntington's disease progression in R6/1 mice. Proc Natl Acad Sci U S A 2019;116:10952-61. [PMID: 31088970 DOI: 10.1073/pnas.1814246116] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
86 Nagai J, Rajbhandari AK, Gangwani MR, Hachisuka A, Coppola G, Masmanidis SC, Fanselow MS, Khakh BS. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell 2019;177:1280-1292.e20. [PMID: 31031006 DOI: 10.1016/j.cell.2019.03.019] [Cited by in Crossref: 142] [Cited by in F6Publishing: 147] [Article Influence: 35.5] [Reference Citation Analysis]
87 McConnell HL, Li Z, Woltjer RL, Mishra A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int 2019;128:70-84. [PMID: 30986503 DOI: 10.1016/j.neuint.2019.04.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
88 Teo RTY, Ferrari Bardile C, Tay YL, Yusof NABM, Kreidy CA, Tan LJ, Pouladi MA. Impaired Remyelination in a Mouse Model of Huntington Disease. Mol Neurobiol 2019;56:6873-82. [PMID: 30937636 DOI: 10.1007/s12035-019-1579-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
89 Zhou B, Zuo YX, Jiang RT. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther 2019;25:665-73. [PMID: 30929313 DOI: 10.1111/cns.13123] [Cited by in Crossref: 98] [Cited by in F6Publishing: 98] [Article Influence: 24.5] [Reference Citation Analysis]
90 Cho IK, Yang B, Forest C, Qian L, Chan AWS. Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys. PLoS One 2019;14:e0214156. [PMID: 30897183 DOI: 10.1371/journal.pone.0214156] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
91 Dvorzhak A, Helassa N, Török K, Schmitz D, Grantyn R. Single Synapse Indicators of Impaired Glutamate Clearance Derived from Fast iGlu u Imaging of Cortical Afferents in the Striatum of Normal and Huntington (Q175) Mice. J Neurosci 2019;39:3970-82. [PMID: 30819797 DOI: 10.1523/JNEUROSCI.2865-18.2019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
92 Kramann N, Menken L, Pförtner R, Schmid SN, Stadelmann C, Wegner C, Brück W. Glial fibrillary acidic protein expression alters astrocytic chemokine release and protects mice from cuprizone-induced demyelination. Glia 2019;67:1308-19. [DOI: 10.1002/glia.23605] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
93 Peteri UK, Niukkanen M, Castrén ML. Astrocytes in Neuropathologies Affecting the Frontal Cortex. Front Cell Neurosci 2019;13:44. [PMID: 30809131 DOI: 10.3389/fncel.2019.00044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
94 Morte B, Gil-Ibáñez P, Bernal J. Regulation of Gene Expression by Thyroid Hormone in Primary Astrocytes: Factors Influencing the Genomic Response. Endocrinology 2018;159:2083-92. [PMID: 29617759 DOI: 10.1210/en.2017-03084] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
95 Lewis PA, Spillane JE. Huntington’s Chorea. The Molecular and Clinical Pathology of Neurodegenerative Disease 2019. [DOI: 10.1016/b978-0-12-811069-0.00006-9] [Reference Citation Analysis]
96 Osipovitch M, Asenjo Martinez A, Mariani JN, Cornwell A, Dhaliwal S, Zou L, Chandler-Militello D, Wang S, Li X, Benraiss SJ, Agate R, Lampp A, Benraiss A, Windrem MS, Goldman SA. Human ESC-Derived Chimeric Mouse Models of Huntington's Disease Reveal Cell-Intrinsic Defects in Glial Progenitor Cell Differentiation. Cell Stem Cell 2019;24:107-122.e7. [PMID: 30554964 DOI: 10.1016/j.stem.2018.11.010] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 8.6] [Reference Citation Analysis]
97 Belardinelli MO, Huenefeldt T, Maffi S, Squitieri F, Migliore S. Effects of stimulus-related variables on mental states recognition in Huntington's disease. Int J Neurosci 2019;129:563-72. [PMID: 30481084 DOI: 10.1080/00207454.2018.1552691] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
98 Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions: YILDIRIM et al. Glia 2019;67:5-26. [DOI: 10.1002/glia.23459] [Cited by in Crossref: 72] [Cited by in F6Publishing: 75] [Article Influence: 14.4] [Reference Citation Analysis]
99 Dvorzhak A, Helassa N, Török K, Schmitz D, Grantyn R. Single synapse indicators of impaired glutamate clearance derived from fast iGluu imaging of cortical afferents in the striatum of normal and Huntington (Q175) mice.. [DOI: 10.1101/455758] [Reference Citation Analysis]
100 Ohno Y, Kinboshi M, Shimizu S. Inwardly Rectifying Potassium Channel Kir4.1 as a Novel Modulator of BDNF Expression in Astrocytes. Int J Mol Sci 2018;19:E3313. [PMID: 30356026 DOI: 10.3390/ijms19113313] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
101 Estrada-Sánchez AM, Castro D, Portillo-Ortiz K, Jang K, Nedjat-Haiem M, Levine MS, Cepeda C. Complete but not partial inhibition of glutamate transporters exacerbates cortical excitability in the R6/2 mouse model of Huntington's disease. CNS Neurosci Ther 2019;25:509-18. [PMID: 30311425 DOI: 10.1111/cns.13070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
102 Yu X, Taylor AMW, Nagai J, Golshani P, Evans CJ, Coppola G, Khakh BS. Reducing Astrocyte Calcium Signaling In Vivo Alters Striatal Microcircuits and Causes Repetitive Behavior. Neuron 2018;99:1170-1187.e9. [PMID: 30174118 DOI: 10.1016/j.neuron.2018.08.015] [Cited by in Crossref: 142] [Cited by in F6Publishing: 147] [Article Influence: 28.4] [Reference Citation Analysis]
103 Rosas-Arellano A, Estrada-Mondragón A, Piña R, Mantellero CA, Castro MA. The Tiny Drosophila Melanogaster for the Biggest Answers in Huntington's Disease. Int J Mol Sci 2018;19:E2398. [PMID: 30110961 DOI: 10.3390/ijms19082398] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
104 Moruno-Manchon JF, Uzor NE, Ambati CR, Shetty V, Putluri N, Jagannath C, McCullough LD, Tsvetkov AS. Sphingosine kinase 1-associated autophagy differs between neurons and astrocytes. Cell Death Dis 2018;9:521. [PMID: 29743513 DOI: 10.1038/s41419-018-0599-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 4.4] [Reference Citation Analysis]
105 Saavedra A, García-Díaz Barriga G, Pérez-Navarro E, Alberch J. Huntington's disease: novel therapeutic perspectives hanging in the balance. Expert Opin Ther Targets 2018;22:385-99. [PMID: 29671352 DOI: 10.1080/14728222.2018.1465930] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
106 Zhang X, Wan JQ, Tong XP. Potassium channel dysfunction in neurons and astrocytes in Huntington's disease. CNS Neurosci Ther 2018;24:311-8. [PMID: 29377621 DOI: 10.1111/cns.12804] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
107 Ferrante A, De Simone R, Ajmone-cat MA, Minghetti L, Popoli P. Adenosine Receptors and Neuroinflammation. The Adenosine Receptors 2018. [DOI: 10.1007/978-3-319-90808-3_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
108 Gomez-Arboledas A, Davila JC, Sanchez-Mejias E, Navarro V, Nuñez-Diaz C, Sanchez-Varo R, Sanchez-Mico MV, Trujillo-Estrada L, Fernandez-Valenzuela JJ, Vizuete M, Comella JX, Galea E, Vitorica J, Gutierrez A. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease. Glia 2018;66:637-53. [PMID: 29178139 DOI: 10.1002/glia.23270] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 17.5] [Reference Citation Analysis]
109 Veldman MB, Yang XW. Molecular insights into cortico-striatal miscommunications in Huntington's disease. Curr Opin Neurobiol 2018;48:79-89. [PMID: 29125980 DOI: 10.1016/j.conb.2017.10.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
110 Messing A. Alexander Disease:A Guide for Patients and Families. Colloquium Series on Neuroglia in Biology and Medicine: From Physiology to Disease 2017;4:i-96. [DOI: 10.4199/c00156ed1v01y201708ngl010] [Reference Citation Analysis]
111 Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, Cohn W, Rajendran PS, Vondriska TM, Whitelegge JP, Coppola G, Khakh BS. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron 2017;95:531-549.e9. [PMID: 28712653 DOI: 10.1016/j.neuron.2017.06.029] [Cited by in Crossref: 363] [Cited by in F6Publishing: 385] [Article Influence: 60.5] [Reference Citation Analysis]