BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nagy PD, Pogany J, Lin JY. How yeast can be used as a genetic platform to explore virus-host interactions: from 'omics' to functional studies. Trends Microbiol 2014;22:309-16. [PMID: 24647076 DOI: 10.1016/j.tim.2014.02.003] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Lin W, Liu Y, Molho M, Zhang S, Wang L, Xie L, Nagy PD. Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation. PLoS Pathog 2019;15:e1008092. [PMID: 31648290 DOI: 10.1371/journal.ppat.1008092] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
2 Weston S, Matthews KL, Lent R, Vlk A, Haupt R, Kingsbury T, Frieman MB. A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication. J Virol 2019;93:e00197-19. [PMID: 31142674 DOI: 10.1128/JVI.00197-19] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
3 Nagy PD, Lin W. Taking over Cellular Energy-Metabolism for TBSV Replication: The High ATP Requirement of an RNA Virus within the Viral Replication Organelle. Viruses 2020;12:E56. [PMID: 31947719 DOI: 10.3390/v12010056] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
4 Aponte-Ubillus JJ, Barajas D, Peltier J, Bardliving C, Shamlou P, Gold D. A rAAV2-producing yeast screening model to identify host proteins enhancing rAAV DNA replication and vector yield. Biotechnol Prog 2019;35:e2725. [PMID: 30298993 DOI: 10.1002/btpr.2725] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
5 Agaoua A, Bendahmane A, Moquet F, Dogimont C. Membrane Trafficking Proteins: A New Target to Identify Resistance to Viruses in Plants. Plants (Basel) 2021;10:2139. [PMID: 34685948 DOI: 10.3390/plants10102139] [Reference Citation Analysis]
6 Barajas D, Xu K, de Castro Martín IF, Sasvari Z, Brandizzi F, Risco C, Nagy PD. Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites. PLoS Pathog 2014;10:e1004388. [PMID: 25329172 DOI: 10.1371/journal.ppat.1004388] [Cited by in Crossref: 77] [Cited by in F6Publishing: 68] [Article Influence: 9.6] [Reference Citation Analysis]
7 Inaba JI, Nagy PD. Tombusvirus RNA replication depends on the TOR pathway in yeast and plants. Virology 2018;519:207-22. [PMID: 29734044 DOI: 10.1016/j.virol.2018.04.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
8 Kang Y, Lin W, Liu Y, Nagy PD. Key tethering function of Atg11 autophagy scaffold protein in formation of virus-induced membrane contact sites during tombusvirus replication. Virology 2022. [DOI: 10.1016/j.virol.2022.04.007] [Reference Citation Analysis]
9 Pillay S, Carette JE. Hunting Viral Receptors Using Haploid Cells. Annu Rev Virol 2015;2:219-39. [PMID: 26958914 DOI: 10.1146/annurev-virology-100114-055119] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
10 Lin W, Feng Z, Prasanth KR, Liu Y, Nagy PD. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathog 2021;17:e1009423. [PMID: 33725015 DOI: 10.1371/journal.ppat.1009423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Sasvari Z, Alatriste Gonzalez P, Nagy PD. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors. Front Plant Sci 2014;5:383. [PMID: 25157258 DOI: 10.3389/fpls.2014.00383] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
12 Gunawardene CD, Jaluba K, White KA. Conserved motifs in a tombusvirus polymerase modulate genome replication, subgenomic transcription, and amplification of defective interfering RNAs. J Virol 2015;89:3236-46. [PMID: 25568204 DOI: 10.1128/JVI.03378-14] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
13 Nagy PD, Pogany J, Xu K. Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses. Viruses 2016;8:68. [PMID: 26950140 DOI: 10.3390/v8030068] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
14 Xu K, Nagy PD. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants. J Virol 2017;91:e01984-16. [PMID: 28100609 DOI: 10.1128/JVI.01984-16] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
15 Hashimoto M, Neriya Y, Yamaji Y, Namba S. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Front Microbiol 2016;7:1695. [PMID: 27833593 DOI: 10.3389/fmicb.2016.01695] [Cited by in Crossref: 67] [Cited by in F6Publishing: 49] [Article Influence: 11.2] [Reference Citation Analysis]
16 Kovalev N, Pogany J, Nagy PD. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate. J Virol 2020;94:e00267-20. [PMID: 32641477 DOI: 10.1128/JVI.00267-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
17 Molho M, Chuang C, Nagy PD. Co-opting of nonATP-generating glycolytic enzymes for TBSV replication. Virology 2021;559:15-29. [PMID: 33799077 DOI: 10.1016/j.virol.2021.03.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Rubino L, Guaragnella N, Giannattasio S. Heterologous expression of carnation Italian ringspot virus p36 protein enhances necrotic cell death in response to acetic acid in Saccharomyces cerevisiae. Mech Ageing Dev 2017;161:255-61. [PMID: 27637297 DOI: 10.1016/j.mad.2016.09.004] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Crucitti D, Chiapello M, Oliva D, Forgia M, Turina M, Carimi F, La Bella F, Pacifico D. Identification and Molecular Characterization of Novel Mycoviruses in Saccharomyces and Non-Saccharomyces Yeasts of Oenological Interest. Viruses 2021;14:52. [PMID: 35062256 DOI: 10.3390/v14010052] [Reference Citation Analysis]
20 Nawaz-ul-Rehman MS, Prasanth KR, Xu K, Sasvari Z, Kovalev N, de Castro Martín IF, Barajas D, Risco C, Nagy PD. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly. PLoS Pathog 2016;12:e1005440. [PMID: 26863541 DOI: 10.1371/journal.ppat.1005440] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
21 Molho M, Prasanth KR, Pogany J, Nagy PD. Targeting conserved co-opted host factors to block virus replication: Using allosteric inhibitors of the cytosolic Hsp70s to interfere with tomato bushy stunt virus replication. Virology 2021;563:1-19. [PMID: 34399236 DOI: 10.1016/j.virol.2021.08.002] [Reference Citation Analysis]
22 Zhao RY. Yeast for virus research. Microb Cell 2017;4:311-30. [PMID: 29082230 DOI: 10.15698/mic2017.10.592] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
23 Nagy PD, Strating JR, van Kuppeveld FJ. Building Viral Replication Organelles: Close Encounters of the Membrane Types. PLoS Pathog 2016;12:e1005912. [PMID: 27788266 DOI: 10.1371/journal.ppat.1005912] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 9.7] [Reference Citation Analysis]
24 Martinez-Martin N. Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions. J Immunol Res 2017;2017:2197615. [PMID: 28321417 DOI: 10.1155/2017/2197615] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
25 Xu K, Nagy PD. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus. PLoS Biol 2016;14:e2000128. [PMID: 27760128 DOI: 10.1371/journal.pbio.2000128] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
26 Kovalev N, Inaba JI, Li Z, Nagy PD. The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast. PLoS Pathog 2017;13:e1006520. [PMID: 28759634 DOI: 10.1371/journal.ppat.1006520] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
27 Nagy PD. Host protein chaperones, RNA helicases and the ubiquitin network highlight the arms race for resources between tombusviruses and their hosts. Adv Virus Res 2020;107:133-58. [PMID: 32711728 DOI: 10.1016/bs.aivir.2020.06.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
28 Imura Y, Molho M, Chuang C, Nagy PD. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants. Virology 2015;484:265-75. [DOI: 10.1016/j.virol.2015.05.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
29 Geng C, Yan ZY, Cheng DJ, Liu J, Tian YP, Zhu CX, Wang HY, Li XD. Tobacco vein banding mosaic virus 6K2 Protein Hijacks NbPsbO1 for Virus Replication. Sci Rep 2017;7:43455. [PMID: 28230184 DOI: 10.1038/srep43455] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
30 Pogany J, Nagy PD. Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro. J Virol 2015;89:5714-23. [PMID: 25762742 DOI: 10.1128/JVI.03711-14] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
31 Sanfaçon H. Grand Challenge in Plant Virology: Understanding the Impact of Plant Viruses in Model Plants, in Agricultural Crops, and in Complex Ecosystems. Front Microbiol 2017;8:860. [PMID: 28596756 DOI: 10.3389/fmicb.2017.00860] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 5.4] [Reference Citation Analysis]
32 Nagy PD. Exploitation of a surrogate host, Saccharomyces cerevisiae, to identify cellular targets and develop novel antiviral approaches. Curr Opin Virol 2017;26:132-40. [PMID: 28843111 DOI: 10.1016/j.coviro.2017.07.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
33 Sahaya Glingston R, Yadav J, Rajpoot J, Joshi N, Nagotu S. Contribution of yeast models to virus research. Appl Microbiol Biotechnol 2021;105:4855-78. [PMID: 34086116 DOI: 10.1007/s00253-021-11331-w] [Reference Citation Analysis]
34 Barajas D, Aponte-Ubillus JJ, Akeefe H, Cinek T, Peltier J, Gold D. Generation of infectious recombinant Adeno-associated virus in Saccharomyces cerevisiae. PLoS One 2017;12:e0173010. [PMID: 28355224 DOI: 10.1371/journal.pone.0173010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
35 Xu K, Nagy PD. RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proc Natl Acad Sci U S A 2015;112:E1782-91. [PMID: 25810252 DOI: 10.1073/pnas.1418971112] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 10.0] [Reference Citation Analysis]
36 Lum KK, Cristea IM. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev Proteomics 2016;13:325-40. [PMID: 26817613 DOI: 10.1586/14789450.2016.1147353] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 8.0] [Reference Citation Analysis]
37 Nagy PD, Feng Z. Tombusviruses orchestrate the host endomembrane system to create elaborate membranous replication organelles. Curr Opin Virol 2021;48:30-41. [PMID: 33845410 DOI: 10.1016/j.coviro.2021.03.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Inaba JI, Xu K, Kovalev N, Ramanathan H, Roy CR, Lindenbach BD, Nagy PD. Screening Legionella effectors for antiviral effects reveals Rab1 GTPase as a proviral factor coopted for tombusvirus replication. Proc Natl Acad Sci U S A 2019;116:21739-47. [PMID: 31591191 DOI: 10.1073/pnas.1911108116] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
39 Andika IB, Wei S, Cao C, Salaipeth L, Kondo H, Sun L. Phytopathogenic fungus hosts a plant virus: A naturally occurring cross-kingdom viral infection. Proc Natl Acad Sci U S A 2017;114:12267-72. [PMID: 29087346 DOI: 10.1073/pnas.1714916114] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 9.6] [Reference Citation Analysis]
40 Nagy PD. Viral sensing of the subcellular environment regulates the assembly of new viral replicase complexes during the course of infection. J Virol 2015;89:5196-9. [PMID: 25741009 DOI: 10.1128/JVI.02973-14] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
41 Fernández de Castro I, Fernández JJ, Barajas D, Nagy PD, Risco C. Three-dimensional imaging of the intracellular assembly of a functional viral RNA replicase complex. J Cell Sci 2017;130:260-8. [PMID: 27026525 DOI: 10.1242/jcs.181586] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 7.2] [Reference Citation Analysis]