BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu Q, Hong H, Wu J, Yan X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology 2019;86:399-411. [DOI: 10.1016/j.tifs.2019.02.050] [Cited by in Crossref: 119] [Cited by in F6Publishing: 122] [Article Influence: 29.8] [Reference Citation Analysis]
Number Citing Articles
1 Dijk W, Villa C, Benedé S, Vassilopoulou E, Mafra I, Garrido-Arandia M, Martínez Blanco M, Bouchaud G, Hoppenbrouwers T, Bavaro SL, Giblin L, Knipping K, Castro AM, Delgado S, Costa J, Bastiaan-Net S. Critical features of an in vitro intestinal absorption model to study the first key aspects underlying food allergen sensitization. Compr Rev Food Sci Food Saf 2023;22:971-1005. [PMID: 36546415 DOI: 10.1111/1541-4337.13097] [Reference Citation Analysis]
2 Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur J Pharm Sci 2023;182:106374. [PMID: 36623699 DOI: 10.1016/j.ejps.2023.106374] [Reference Citation Analysis]
3 Guo Z, Yang Y, Hu B, Zhu L, Liu C, Li M, Gu Z, Xin Y, Guo Z, Sun H, Guan Y, Zhang L. The Bioaccessibility of Yak Bone Collagen Hydrolysates: Focus on Analyzing the Variation Regular of Peptides and Free Amino Acids. Foods 2023;12. [PMID: 36900520 DOI: 10.3390/foods12051003] [Reference Citation Analysis]
4 Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr 2023;:1-14. [PMID: 36798052 DOI: 10.1080/10408398.2023.2170973] [Reference Citation Analysis]
5 Varga-Tóth A, Németh C, Dalmadi I, Csurka T, Csorba R, Elayan M, Enkhbold M, Hidas K, Friedrich LF. Investigation of the effects of bovine collagen peptides and mixed berries on rheological properties and biological activity of egg white-based beverage via central composite design. Front Nutr 2022;9:1011553. [PMID: 36846024 DOI: 10.3389/fnut.2022.1011553] [Reference Citation Analysis]
6 Ito K, Terada Y, Nakayama R, Shigeta T, Hisada T, Fujitani M, Kanie K, Kato R, Fukui S, Sugiyama E, Mizuno H, Todoroki K. DMT-(S)-Pro-OSu derivatization UPLC/ESI-MS/MS is a powerful method for the comprehensive analysis of dipeptides.. [DOI: 10.21203/rs.3.rs-2414378/v1] [Reference Citation Analysis]
7 Althnaibat RM, Bruce HL, Gӓnzle MG. Identification of peptides from camel milk that inhibit starch digestion. International Dairy Journal 2023. [DOI: 10.1016/j.idairyj.2023.105620] [Reference Citation Analysis]
8 Cruz-chamorro I, Santos-sánchez G, Álvarez-lópez AI, Pedroche J, Lardone PJ, Arnoldi A, Lammi C, Carrillo-vico A. Pleiotropic biological effects of Lupinus spp. protein hydrolysates. Trends in Food Science & Technology 2023. [DOI: 10.1016/j.tifs.2023.02.011] [Reference Citation Analysis]
9 Zhang H, Qi L, Wang X, Guo Y, Liu J, Xu Y, Liu C, Zhang C, Richel A. Preparation of a cattle bone collagen peptide-calcium chelate by the ultrasound method and its structural characterization, stability analysis, and bioactivity on MC3T3-E1 cells. Food Funct 2023;14:978-89. [PMID: 36541828 DOI: 10.1039/d2fo02146c] [Reference Citation Analysis]
10 Chen Z, Nong Y, Wang Q, Feng L, He Y, Guo B, Qin Y, Zhong X, Qin J, Wei J, Dong M, Pan S, Su Z. Preventive effect of tilapia skin collagen hydrolysates on ulcerative colitis mice based on metabonomic and 16 S rRNA gene sequencing. J Sci Food Agric 2023. [PMID: 36645331 DOI: 10.1002/jsfa.12457] [Reference Citation Analysis]
11 Xue H, Han J, Ma J, Song H, He B, Liu X, Yi M, Zhang L. Identification of Immune-Active Peptides in Casein Hydrolysates and Its Transport Mechanism on a Caco-2 Monolayer. Foods 2023;12. [PMID: 36673465 DOI: 10.3390/foods12020373] [Reference Citation Analysis]
12 Zhou L, Mendez RL, Kwon JY. In Silico Prospecting for Novel Bioactive Peptides from Seafoods: A Case Study on Pacific Oyster (Crassostrea gigas). Molecules 2023;28. [PMID: 36677709 DOI: 10.3390/molecules28020651] [Reference Citation Analysis]
13 Vásquez P, Cian RE, Drago SR. Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans). Handbook of Food Bioactive Ingredients 2023. [DOI: 10.1007/978-3-030-81404-5_16-1] [Reference Citation Analysis]
14 Burrow K, Fletcher S, Lee H, Serventi L. Bioactive Compounds from Food and Their Applications in the Treatment of Type 2 Diabetes. Sustainable Development Goals Series 2023. [DOI: 10.1007/978-3-031-12358-0_9] [Reference Citation Analysis]
15 Lordan R, Dermiki M. Fermented milk, yogurt beverages, and probiotics. Functional Foods and Their Implications for Health Promotion 2023. [DOI: 10.1016/b978-0-12-823811-0.00010-9] [Reference Citation Analysis]
16 Zhao C, Gong Y, Zheng L, Zhao M. Whey protein hydrolysate enhances exercise endurance, regulates energy metabolism, and attenuates muscle damage in exercise mice. Food Bioscience 2023. [DOI: 10.1016/j.fbio.2023.102453] [Reference Citation Analysis]
17 Forutan M, Hasani M, Hasani S, Salehi N, Sabbagh F. Liposome System for Encapsulation of Spirulina platensis Protein Hydrolysates: Controlled-Release in Simulated Gastrointestinal Conditions, Structural and Functional Properties. Materials (Basel) 2022;15. [PMID: 36500077 DOI: 10.3390/ma15238581] [Reference Citation Analysis]
18 Zhu Y, Lao F, Pan X, Wu J. Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022;12:1622. [DOI: 10.3390/biom12111622] [Reference Citation Analysis]
19 Wang J, Xie Y, Luan Y, Guo T, Xiao S, Zeng X, Zhang S. Identification and dipeptidyl peptidase IV (DPP-IV) inhibitory activity verification of peptides from mouse lymphocytes. Food Science and Human Wellness 2022;11:1515-26. [DOI: 10.1016/j.fshw.2022.06.009] [Reference Citation Analysis]
20 Göksu AG, Çakır B, Gülseren İ. Hazelnut peptide fractions preserve their bioactivities beyond industrial manufacture and simulated digestion of hazelnut cocoa cream. Food Research International 2022;161:111865. [DOI: 10.1016/j.foodres.2022.111865] [Reference Citation Analysis]
21 Zhao M, Ahn DU, Li S, Liu W, Yi S, Huang X. Effects of phosvitin phosphopeptide-Ca complex prepared by efficient enzymatic hydrolysis on calcium absorption and bone deposition of mice. Food Science and Human Wellness 2022;11:1631-40. [DOI: 10.1016/j.fshw.2022.06.022] [Reference Citation Analysis]
22 Xu C, Kong L, Tian Y. Investigation of the Phenolic Component Bioavailability Using the In Vitro Digestion/Caco-2 Cell Model, as well as the Antioxidant Activity in Chinese Red Wine. Foods 2022;11:3108. [DOI: 10.3390/foods11193108] [Reference Citation Analysis]
23 Yao M, Xu F, Yao Y, Wang H, Ju X, Wang L. Assessment of Novel Oligopeptides from Rapeseed Napin (Brassica napus) in Protecting HepG2 Cells from Insulin Resistance and Oxidative Stress. J Agric Food Chem 2022. [PMID: 36129441 DOI: 10.1021/acs.jafc.2c03718] [Reference Citation Analysis]
24 Sivaraman K, Shanthi C. Purified fish skin collagen hydrolysate attenuates TNF-α induced barrier dysfunction in-vitro and DSS induced colitis in-vivo model. Int J Biol Macromol 2022;222:448-61. [PMID: 36116587 DOI: 10.1016/j.ijbiomac.2022.09.122] [Reference Citation Analysis]
25 Zhang M, Zhu L, Wu G, Liu T, Qi X, Zhang H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit Rev Food Sci Nutr 2022;:1-23. [PMID: 36095057 DOI: 10.1080/10408398.2022.2120454] [Reference Citation Analysis]
26 Pazos-Castro D, Margain C, Gonzalez-Klein Z, Amores-Borge M, Yuste-Calvo C, Garrido-Arandia M, Zurita L, Esteban V, Tome-Amat J, Diaz-Perales A, Ponz F. Suitability of potyviral recombinant virus-like particles bearing a complete food allergen for immunotherapy vaccines. Front Immunol 2022;13:986823. [PMID: 36159839 DOI: 10.3389/fimmu.2022.986823] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Gao J, Li L, Zhao D, Wang X, Xia Y, Li B, Liu C, Zuo X. Tilapia skin peptides, a by-product of fish processing, ameliorate DSS-induced colitis by regulating inflammation and inhibiting apoptosis. Front Nutr 2022;9. [DOI: 10.3389/fnut.2022.988758] [Reference Citation Analysis]
28 Liu C, Guo Z, Yang Y, Hu B, Zhu L, Li M, Gu Z, Xin Y, Sun H, Guan Y, Zhang L. Identification of dipeptidyl peptidase-IV inhibitory peptides from yak bone collagen by in silico and in vitro analysis. Eur Food Res Technol. [DOI: 10.1007/s00217-022-04111-x] [Reference Citation Analysis]
29 Caira S, Picariello G, Renzone G, Arena S, Troise AD, De Pascale S, Ciaravolo V, Pinto G, Addeo F, Scaloni A. Recent developments in peptidomics for the quali-quantitative analysis of food-derived peptides in human body fluids and tissues. Trends in Food Science & Technology 2022;126:41-60. [DOI: 10.1016/j.tifs.2022.06.014] [Reference Citation Analysis]
30 Kolberg NA, Tikhonov SL, Tikhonova NV, Kudryashov LS. Influencе of peptides from the bursa of Fabricius in broiler chickens on the functional activity of subpopulations of lymphocytes in immunosuppressed mice. Teor prakt pererab mâsa (Print) 2022;7:83-90. [DOI: 10.21323/2414-438x-2022-7-2-83-90] [Reference Citation Analysis]
31 Kolberg N, Tikhonova N, Tikhonov S, Leontieva S, Sergeeva I. Development and effect of poultry lymphoid tissue supplement on cell viability in culture. Food Processing: Techniques and Technology 2022;52:296-309. [DOI: 10.21603/2074-9414-2022-2-2364] [Reference Citation Analysis]
32 Guha S, Majumder K. Comprehensive Review of γ-Glutamyl Peptides (γ-GPs) and Their Effect on Inflammation Concerning Cardiovascular Health. J Agric Food Chem 2022. [PMID: 35727887 DOI: 10.1021/acs.jafc.2c01712] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Zhang ZD, Tao Q, Qin Z, Liu XW, Li SH, Bai LX, Yang YJ, Li JY. Uptake and Transport of Naringenin and Its Antioxidant Effects in Human Intestinal Epithelial Caco-2 Cells. Front Nutr 2022;9:894117. [PMID: 35685871 DOI: 10.3389/fnut.2022.894117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Fan H, Liu H, Zhang Y, Zhang S, Liu T, Wang D. Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development. Journal of Future Foods 2022;2:143-59. [DOI: 10.1016/j.jfutfo.2022.03.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
35 Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022;:1-31. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Reference Citation Analysis]
36 Xue W, Liu X, Zhao W, Yu Z. Identification and molecular mechanism of novel tyrosinase inhibitory peptides from collagen. Journal of Food Science. [DOI: 10.1111/1750-3841.16160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. Food Reviews International. [DOI: 10.1080/87559129.2022.2062772] [Reference Citation Analysis]
38 You H, Zhang Y, Wu T, Li J, Wang L, Yu Z, Liu J, Liu X, Ding L. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. LWT 2022;160:113255. [DOI: 10.1016/j.lwt.2022.113255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Liu D, Guo Y, Ma H. Production, bioactivities and bioavailability of bioactive peptides derived from walnut origin by-products: a review. Crit Rev Food Sci Nutr 2022;:1-16. [PMID: 35361034 DOI: 10.1080/10408398.2022.2054933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Aguchem RN, Okagu IU, Okagu OD, Ndefo JC, Udenigwe CC. A review on the techno‐functional, biological, and health‐promoting properties of hempseed‐derived proteins and peptides. Journal of Food Biochemistry. [DOI: 10.1111/jfbc.14127] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Duffuler P, Bhullar KS, de Campos Zani SC, Wu J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. J Agric Food Chem 2022. [PMID: 35302369 DOI: 10.1021/acs.jafc.1c06289] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
42 Wu S, Wu Q, Wang J, Li Y, Chen B, Zhu Z, Huang R, Chen M, Huang A, Xie Y, Jiao C, Ding Y. Novel Selenium Peptides Obtained from Selenium-Enriched Cordyceps militaris Alleviate Neuroinflammation and Gut Microbiota Dysbacteriosis in LPS-Injured Mice. J Agric Food Chem 2022. [PMID: 35238567 DOI: 10.1021/acs.jafc.1c08393] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
44 Sato K. Metabolic Fate and Bioavailability of Food-Derived Peptides: Are Normal Peptides Passed through the Intestinal Layer To Exert Biological Effects via Proposed Mechanisms? J Agric Food Chem 2022. [PMID: 35104135 DOI: 10.1021/acs.jafc.1c07438] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
45 Majid A, Lakshmikanth M, Lokanath NK, Poornima Priyadarshini CG. Generation, characterization and molecular binding mechanism of novel dipeptidyl peptidase-4 inhibitory peptides from sorghum bicolor seed protein. Food Chem 2022;369:130888. [PMID: 34474286 DOI: 10.1016/j.foodchem.2021.130888] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
46 Sun A, Wu W, Soladoye OP, Aluko RE, Bak KH, Fu Y, Zhang Y. Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res Int 2022;151:110823. [PMID: 34980374 DOI: 10.1016/j.foodres.2021.110823] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
47 Martínez-medina GA, Chávez-gonzález ML, Méndez-carmona JY, de la Rosa O, Carranza-méndez R, Cruz-casas DE, Espitia-hernández P, Amaya-chantaca DP, Aguilar CN. Immunomodulatory Properties of Proteins and Peptides: Food Derivatives Approach. Immunomodulators and Human Health 2022. [DOI: 10.1007/978-981-16-6379-6_14] [Reference Citation Analysis]
48 Urbizo-reyes U, Liceaga AM, Reddivari L, Kim K, Anderson JM. Enzyme kinetics, molecular docking, and in silico characterization of canary seed (Phalaris canariensis L.) peptides with ACE and pancreatic lipase inhibitory activity. Journal of Functional Foods 2022;88:104892. [DOI: 10.1016/j.jff.2021.104892] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
49 Araiza-calahorra A, Mondor M, Boesch C, Orfila C, Goycoolea FM, Hernández-álvarez AJ. Proteins, peptides, and protein hydrolysates as immunomodulatory and antioxidant agents for the formulation of functional foods. Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress 2022. [DOI: 10.1016/b978-0-12-823482-2.00016-9] [Reference Citation Analysis]
50 Hernández-álvarez AJ, Nosworthy MG, Mondor M. Amino Acid Profile and Bioavailability of Plant-Based Protein-Rich Products. Plant Protein Foods 2022. [DOI: 10.1007/978-3-030-91206-2_12] [Reference Citation Analysis]
51 Galanakis CM, Drago SR. Introduction. Nutraceutical and Functional Food Components 2022. [DOI: 10.1016/b978-0-323-85052-0.00003-9] [Reference Citation Analysis]
52 Hernández-ledesma B, Fernández-tomé S, Amigo L. Bioactive peptides against inflammatory intestinal disorders and obesity. Bioactive Food Components Activity in Mechanistic Approach 2022. [DOI: 10.1016/b978-0-12-823569-0.00010-2] [Reference Citation Analysis]
53 García-gurrola A, Wall-medrano A, Olivas-aguirre MA, Olivas-aguirre FJ, Escobar-puentes AA. Immunomodulatory Properties of Nutraceuticals and Functional Foods. Nutraceuticals and Functional Foods in Immunomodulators 2022. [DOI: 10.1007/978-981-19-2507-8_2] [Reference Citation Analysis]
54 Rendón-rosales MÁ, Torres-llanez MJ, Mazorra-manzano MA, González-córdova AF, Hernández-mendoza A, Vallejo-cordoba B. In vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with Lactococcus lactis NRRL B-50571 and NRRL B-50572. LWT 2022;154:112581. [DOI: 10.1016/j.lwt.2021.112581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Moaveni S, Salami M, Khodadadi M, Mcdougall M, Emam-djomeh Z. Investigation of S.limacinum microalgae digestibility and production of antioxidant bioactive peptides. LWT 2022;154:112468. [DOI: 10.1016/j.lwt.2021.112468] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
56 Kumar M, Tomar M, Punia S, Dhakane-lad J, Dhumal S, Changan S, Senapathy M, Berwal MK, Sampathrajan V, Sayed AA, Chandran D, Pandiselvam R, Rais N, Mahato DK, Udikeri SS, Satankar V, Anitha T, Reetu, Radha, Singh S, Amarowicz R, Kennedy JF. Plant-based proteins and their multifaceted industrial applications. LWT 2022;154:112620. [DOI: 10.1016/j.lwt.2021.112620] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
57 Weng Z, Chen Y, Liang T, Lin Y, Cao H, Song H, Xiong L, Wang F, Shen X, Xiao J. A review on processing methods and functions of wheat germ-derived bioactive peptides. Crit Rev Food Sci Nutr 2021;:1-17. [PMID: 34964419 DOI: 10.1080/10408398.2021.2021139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
58 Sun X, Abioye RO, Okagu OD, Udenigwe CC. Peptide-Mucin Binding and Biosimilar Mucus-Permeating Properties. Gels 2021;8:1. [PMID: 35049536 DOI: 10.3390/gels8010001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Gülseren İ, Vahapoglu B. The Stability of Food Bioactive Peptides in Blood: An Overview. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-021-10321-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Singh PP, Gupta V, Prakash B. Recent advancement in functional properties and toxicity assessment of plant-derived bioactive peptides using bioinformatic approaches. Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 34783283 DOI: 10.1080/10408398.2021.2002807] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
61 Li W, Li H, Zhang Y, Zhang C, Zhang J, Liu X. Differences in the gut microbiota composition of rats fed with soybean protein and their derived peptides. J Food Sci 2021. [PMID: 34730237 DOI: 10.1111/1750-3841.15948] [Reference Citation Analysis]
62 Peled S, Livney YD. Oligosaccharide-lactoferrin shell-crosslinked particles for selective targeting of proteins to probiotic bacteria in the colon. Food Hydrocolloids 2021;120:106973. [DOI: 10.1016/j.foodhyd.2021.106973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Liu M, Zhang T, Liang X, Yuan Q, Zeng X, Wu Z, Pan D, Tao M, Guo Y. Production and transepithelial transportation of casein-derived peptides and identification a novel antioxidant peptide LHSMK. LWT 2021;151:112194. [DOI: 10.1016/j.lwt.2021.112194] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
64 Zhang Y, Xu Q, Hou J, Huang G, Zhao S, Zheng N, Wang J. Loss of bioactive microRNAs in cow's milk by ultra-high-temperature treatment but not by pasteurization treatment. J Sci Food Agric 2021. [PMID: 34689341 DOI: 10.1002/jsfa.11607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Abeer MM, Trajkovic S, Brayden DJ. Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed Pharmacother 2021;144:112275. [PMID: 34628165 DOI: 10.1016/j.biopha.2021.112275] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
66 Daniloski D, Mccarthy NA, Vasiljevic T. Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends in Food Science & Technology 2021;116:681-700. [DOI: 10.1016/j.tifs.2021.08.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
67 Trigo JP, Engström N, Steinhagen S, Juul L, Harrysson H, Toth GB, Pavia H, Scheers N, Undeland I. In vitro digestibility and Caco-2 cell bioavailability of sea lettuce (Ulva fenestrata) proteins extracted using pH-shift processing. Food Chem 2021;356:129683. [PMID: 33845254 DOI: 10.1016/j.foodchem.2021.129683] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
68 Song T, Lv M, Zhou M, Huang M, Zheng L, Zhao M. Soybean-Derived Antihypertensive Peptide LSW (Leu-Ser-Trp) Antagonizes the Damage of Angiotensin II to Vascular Endothelial Cells through the Trans-vesicular Pathway. J Agric Food Chem 2021;69:10536-49. [PMID: 34460247 DOI: 10.1021/acs.jafc.1c02733] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
69 Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021;:1-27. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Indrati R. Bioactive Peptides from Legumes and Their Bioavailability. Legumes - Volume 2 [Working Title] 2021. [DOI: 10.5772/intechopen.99979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Ke X, Hu X, Li L, Yang X, Chen S, Wu Y, Xue C. A novel zinc-binding peptide identified from tilapia (Oreochromis niloticus) skin collagen and transport pathway across Caco-2 monolayers. Food Bioscience 2021;42:101127. [DOI: 10.1016/j.fbio.2021.101127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
72 Wu S, Chen M, Liao X, Huang R, Wang J, Xie Y, Hu H, Zhang J, Wu Q, Ding Y. Protein hydrolysates from Pleurotus geesteranus obtained by simulated gastrointestinal digestion exhibit neuroprotective effects in H2 O2 -injured PC12 cells. J Food Biochem 2021;:e13879. [PMID: 34309037 DOI: 10.1111/jfbc.13879] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Sivaraman K, Shanthi C. Role of fish collagen hydrolysate in attenuating inflammation-An in vitro study. J Food Biochem 2021;:e13876. [PMID: 34309035 DOI: 10.1111/jfbc.13876] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
74 Jia L, Wang L, Liu C, Liang Y, Lin Q. Bioactive peptides from foods: production, function, and application. Food Funct 2021;12:7108-25. [PMID: 34223585 DOI: 10.1039/d1fo01265g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
75 Lu Y, Wang J, Soladoye OP, Aluko RE, Fu Y, Zhang Y. Preparation, receptors, bioactivity and bioavailability of γ-glutamyl peptides: A comprehensive review. Trends in Food Science & Technology 2021;113:301-14. [DOI: 10.1016/j.tifs.2021.04.051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
76 Trinidad-calderón PA, Acosta-cruz E, Rivero-masante MN, Díaz-gómez JL, García-lara S, López-castillo LM. Maize bioactive peptides: From structure to human health. Journal of Cereal Science 2021;100:103232. [DOI: 10.1016/j.jcs.2021.103232] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
77 Trinidad-calderón PA, Acosta-cruz E, Rivero-masante MN, Díaz-gómez JL, García-lara S, López-castillo LM. Maize bioactive peptides: From structure to human health. Journal of Cereal Science 2021;100:103232. [DOI: 10.1016/j.jcs.2021.103232] [Reference Citation Analysis]
78 Qiu L, Deng Z, Zhao C, Xiao T, Weng C, Li J, Zheng L. Nutritional composition and proteomic analysis of soft-shelled turtle (Pelodiscus sinensis) egg and identification of oligopeptides with alpha-glucosidase inhibitory activity. Food Res Int 2021;145:110414. [PMID: 34112417 DOI: 10.1016/j.foodres.2021.110414] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
79 Xue H, Han J, He B, Yi M, Liu X, Song H, Li J. Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats. Food Funct 2021;12:5157-70. [PMID: 33977978 DOI: 10.1039/d1fo00356a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
80 Deng YH, Chen JH, Yang Q, Zhuo YZ. Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance. Chemical Engineering Research and Design 2021;170:423-433. [DOI: 10.1016/j.cherd.2021.04.026] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 Udenigwe CC, Abioye RO, Okagu IU, Obeme-nmom JI. Bioaccessibility of bioactive peptides: recent advances and perspectives. Current Opinion in Food Science 2021;39:182-9. [DOI: 10.1016/j.cofs.2021.03.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
82 Katayama S, Corpuz HM, Nakamura S. Potential of plant-derived peptides for the improvement of memory and cognitive function. Peptides 2021;142:170571. [PMID: 33965441 DOI: 10.1016/j.peptides.2021.170571] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
83 Fajardo‐espinoza FS, Ordaz‐pichardo C, Sankar U, Romero‐rojas A, Moreno‐eutimio MA, Hernández‐sánchez H. In vitro cytomodulatory and immunomodulatory effects of bovine colostrum whey protein hydrolysates. Int J Food Sci Technol 2021;56:2109-2121. [DOI: 10.1111/ijfs.14767] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
84 Daniloski D, Cunha NM, Mccarthy NA, O'callaghan TF, Mcparland S, Vasiljevic T. Health-related outcomes of genetic polymorphism of bovine β-casein variants: A systematic review of randomised controlled trials. Trends in Food Science & Technology 2021;111:233-48. [DOI: 10.1016/j.tifs.2021.02.073] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
85 Wu S, Bekhit AEA, Wu Q, Chen M, Liao X, Wang J, Ding Y. Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends in Food Science & Technology 2021;108:164-76. [DOI: 10.1016/j.tifs.2020.12.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
86 Senadheera TRL, Dave D, Shahidi F. Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa). Food Prod Process and Nutr 2021;3. [DOI: 10.1186/s43014-020-00049-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
87 Ding X, Hu X, Chen Y, Xie J, Ying M, Wang Y, Yu Q. Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends in Food Science & Technology 2021;107:455-65. [DOI: 10.1016/j.tifs.2020.11.015] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
88 Sato K. Methodologies for bioavailability assessment of food-derived peptide. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00018-2] [Reference Citation Analysis]
89 Chen F, Lin L, Zhao M, Zhu Q. Modification of Cucumaria frondosa hydrolysate through maillard reaction for sea cucumber peptide based-beverage. LWT 2021;136:110329. [DOI: 10.1016/j.lwt.2020.110329] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
90 Jash A, Ubeyitogullari A, Rizvi SSH. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mater Chem B 2021;9:4773-92. [PMID: 34027542 DOI: 10.1039/d1tb00126d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
91 Carpena M, da Pereira R, Garcia-perez P, Otero P, Soria-lopez A, Chamorro F, Alcaide-sancho J, Fraga-corral M, Prieto MA, Simal-gandara J. An Overview of Food Bioactive Compounds and Their Properties. Food Bioactive Ingredients 2021. [DOI: 10.1007/978-3-030-84643-5_2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020;19:1488-520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
93 Mei F, Duan Z, Chen M, Lu J, Zhao M, Li L, Shen X, Xia G, Chen S. Effect of a high-collagen peptide diet on the gut microbiota and short-chain fatty acid metabolism. Journal of Functional Foods 2020;75:104278. [DOI: 10.1016/j.jff.2020.104278] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
94 Wu J. A Novel Angiotensin Converting Enzyme 2 (ACE2) Activating Peptide: A Reflection of 10 Years of Research on a Small Peptide Ile-Arg-Trp (IRW). J Agric Food Chem 2020;68:14402-8. [DOI: 10.1021/acs.jafc.0c05544] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
95 Song T, Lv M, Zhang L, Zhang X, Song G, Huang M, Zheng L, Zhao M. The Protective Effects of Tripeptides VPP and IPP against Small Extracellular Vesicles from Angiotensin II-Induced Vascular Smooth Muscle Cells Mediating Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells. J Agric Food Chem 2020;68:13730-41. [DOI: 10.1021/acs.jafc.0c05698] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
96 Tok K, Moulahoum H, Kocadag Kocazorbaz E, Zihnioglu F. Bioactive peptides with multiple activities extracted from Barley ( Hordeum vulgare L.) grain protein hydrolysates: Biochemical analysis and computational identification. J Food Process Preserv 2021;45. [DOI: 10.1111/jfpp.15024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
97 Aguilar‐toalá JE, Liceaga AM. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: beyond chemical properties. Int J Food Sci Technol 2021;56:2193-204. [DOI: 10.1111/ijfs.14855] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
98 Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020;165:2143-96. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Cited by in Crossref: 72] [Cited by in F6Publishing: 58] [Article Influence: 24.0] [Reference Citation Analysis]
99 De Leon Rodriguez LM, Hemar Y. Prospecting the applications and discovery of peptide hydrogels in food. Trends in Food Science & Technology 2020;104:37-48. [DOI: 10.1016/j.tifs.2020.07.025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
100 Moreno-fernández S, Garcés-rimón M, Miguel M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends in Food Science & Technology 2020;104:208-18. [DOI: 10.1016/j.tifs.2020.08.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
101 Zheng S, Zhu N, Shi C, Zheng H. Genomic data mining approaches for the discovery of anticancer peptides from Ganoderma sinense. Phytochemistry 2020;179:112466. [PMID: 32823212 DOI: 10.1016/j.phytochem.2020.112466] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
102 Oh Y, Ahn CB, Je JY. Ark shell protein-derived bioactive peptides promote osteoblastic differentiation through upregulation of the canonical Wnt/β-catenin signaling in human bone marrow-derived mesenchymal stem cells. J Food Biochem 2020;:e13440. [PMID: 32808363 DOI: 10.1111/jfbc.13440] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
103 Zhou J, Chen M, Wu S, Liao X, Wang J, Wu Q, Zhuang M, Ding Y. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International 2020;134:109230. [DOI: 10.1016/j.foodres.2020.109230] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
104 Görgüç A, Gençdağ E, Yılmaz FM. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments - A review. Food Res Int 2020;136:109504. [PMID: 32846583 DOI: 10.1016/j.foodres.2020.109504] [Cited by in Crossref: 64] [Cited by in F6Publishing: 74] [Article Influence: 21.3] [Reference Citation Analysis]
105 Wen C, Zhang J, Feng Y, Duan Y, Ma H, Zhang H. Purification and identification of novel antioxidant peptides from watermelon seed protein hydrolysates and their cytoprotective effects on H2O2-induced oxidative stress. Food Chem 2020;327:127059. [PMID: 32447138 DOI: 10.1016/j.foodchem.2020.127059] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 13.0] [Reference Citation Analysis]
106 Pimentel FB, Cermeño M, Kleekayai T, Harnedy PA, FitzGerald RJ, Alves RC, Oliveira MBPP. Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity of the red seaweed Porphyra dioica. Food Res Int 2020;136:109309. [PMID: 32846518 DOI: 10.1016/j.foodres.2020.109309] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
107 Pertiwi MGP, Marsono Y, Indrati R. In vitro gastrointestinal simulation of tempe prepared from koro kratok (Phaseolus lunatus L.) as an angiotensin-converting enzyme inhibitor. J Food Sci Technol 2020;57:1847-1855. [DOI: 10.1007/s13197-019-04219-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
108 Li Z, Wang J, Zheng B, Guo Z. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrason Sonochem 2020;65:105063. [PMID: 32199256 DOI: 10.1016/j.ultsonch.2020.105063] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 14.7] [Reference Citation Analysis]
109 Megrous S, Al-dalali S, Zhao X, Chen C, Cao Y, Bourouis I, Mekkaoui A, Yang Z, Yang Z. Evaluation of Antidiabetic Activities of Casein Hydrolysates by a Bacillus Metalloendopeptidase. Int J Pept Res Ther 2020;26:2519-27. [DOI: 10.1007/s10989-020-10045-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
110 Mei F, Liu J, Wu J, Duan Z, Chen M, Meng K, Chen S, Shen X, Xia G, Zhao M. Collagen Peptides Isolated from Salmo salar and Tilapia nilotica Skin Accelerate Wound Healing by Altering Cutaneous Microbiome Colonization via Upregulated NOD2 and BD14. J Agric Food Chem 2020;68:1621-33. [DOI: 10.1021/acs.jafc.9b08002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 13.0] [Reference Citation Analysis]
111 Liao W, Chen H, Jin W, Yang Z, Cao Y, Miao J. Three Newly Isolated Calcium-Chelating Peptides from Tilapia Bone Collagen Hydrolysate Enhance Calcium Absorption Activity in Intestinal Caco-2 Cells. J Agric Food Chem 2020;68:2091-8. [DOI: 10.1021/acs.jafc.9b07602] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
112 Sun X, Acquah C, Aluko RE, Udenigwe CC. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. Journal of Functional Foods 2020;64:103680. [DOI: 10.1016/j.jff.2019.103680] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 20.0] [Reference Citation Analysis]
113 Metwally MM, Abdel-fatt A, El-beltagi HS, Ameen MA. Hepatoprotective Effect of Casein Glycomacropeptide as Compared to Pterostilbene and Curcumin. International J of Dairy Science 2019;15:10-21. [DOI: 10.3923/ijds.2020.10.21] [Reference Citation Analysis]
114 Dávalos Terán I, Imai K, Lacroix IME, Fogliano V, Udenigwe CC. Bioinformatics of edible yellow mealworm (Tenebrio molitor) proteome reveal the cuticular proteins as promising precursors of dipeptidyl peptidase-IV inhibitors. J Food Biochem 2020;44:e13121. [PMID: 31837166 DOI: 10.1111/jfbc.13121] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
115 Tagliazucchi D, Martini S, Solieri L. Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. Fermentation 2019;5:96. [DOI: 10.3390/fermentation5040096] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
116 Li M, Zhang Y, Xia S, Ding X. Finding and isolation of novel peptides with anti-proliferation ability of hepatocellular carcinoma cells from mung bean protein hydrolysates. Journal of Functional Foods 2019;62:103557. [DOI: 10.1016/j.jff.2019.103557] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
117 Li Y, Lammi C, Boschin G, Arnoldi A, Aiello G. Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis. J Agric Food Chem 2019;67:11825-38. [PMID: 31588750 DOI: 10.1021/acs.jafc.9b03566] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]