BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nongonierma AB, Fitzgerald RJ. Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology 2016;50:26-43. [DOI: 10.1016/j.tifs.2016.01.022] [Cited by in Crossref: 65] [Cited by in F6Publishing: 46] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Althnaibat RM, Bruce HL, Gӓnzle MG. Identification of peptides from camel milk that inhibit starch digestion. International Dairy Journal 2023. [DOI: 10.1016/j.idairyj.2023.105620] [Reference Citation Analysis]
2 Lin J, Wen L, Zhou Y, Wang S, Ye H, Su J, Li J, Shu J, Huang J, Zhou P. PepQSAR: a comprehensive data source and information platform for peptide quantitative structure-activity relationships. Amino Acids 2023;55:235-42. [PMID: 36474016 DOI: 10.1007/s00726-022-03219-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Lordan R, Dermiki M. Fermented milk, yogurt beverages, and probiotics. Functional Foods and Their Implications for Health Promotion 2023. [DOI: 10.1016/b978-0-12-823811-0.00010-9] [Reference Citation Analysis]
4 Mudgil P, Maqsood S. Bioactive peptides derived from camel milk proteins. Enzymes Beyond Traditional Applications in Dairy Science and Technology 2023. [DOI: 10.1016/b978-0-323-96010-6.00009-6] [Reference Citation Analysis]
5 Sun X, Yu Z, Liang C, Xie S, Wen J, Wang H, Wang J, Yang Y, Han R. Developmental changes in proteins of casein micelles in goat milk using data-independent acquisition-based proteomics methods during the lactation cycle. Journal of Dairy Science 2022. [DOI: 10.3168/jds.2022-22032] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Lin J, Wen L, Zhou Y, Wang S, Ye H, Li J, Shu J, Huang J, Zhou P. PepQSAR: A Comprehensive Data Source and Information Platform for Peptide Quantitative Structure–Activity Relationships.. [DOI: 10.21203/rs.3.rs-2004780/v1] [Reference Citation Analysis]
7 Hakimi S, Kari NM, Ismail N, Ismail MN, Ahmad F. Evaluation of taste active peptides and amino acids from anchovy proteins in fish sauce by in silico approach. Food Sci Biotechnol. [DOI: 10.1007/s10068-022-01097-w] [Reference Citation Analysis]
8 Zhang X, He H, Xiang J, Hou T. Screening and bioavailability evaluation of anti-oxidative selenium-containing peptides from soybeans based on specific structures. Food Funct 2022;13:5252-61. [PMID: 35438695 DOI: 10.1039/d2fo00113f] [Reference Citation Analysis]
9 Singh BP, Bangar SP, Albaloosh M, Ajayi FF, Mudgil P, Maqsood S. Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Crit Rev Food Sci Nutr 2022;:1-22. [PMID: 35521961 DOI: 10.1080/10408398.2022.2067120] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mir Derikvand R, Sohrabi SS, Sohrabi SM, Samiei K, Department of Plant Genetics and Breeding, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran, Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran, Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran, Department of Agriculture, Kangavar Branch, Islamic Azad University, Kangavar, Iran. Identification, Isolation and Expression Analysis of Hevein gene Family in Barley (Hordeum vulgar). pgr 2022;8:83-102. [DOI: 10.52547/pgr.8.2.7] [Reference Citation Analysis]
11 Tok K, Moulahoum H, Kocadag Kocazorbaz E, Zihnioglu F. Bioactive peptides: Improving the future of diabetes therapy. Bioactive Natural Products 2022. [DOI: 10.1016/b978-0-323-91250-1.00003-3] [Reference Citation Analysis]
12 Gurumayum S, Kaur S, Rasane P, Singh J. Global scenario of fermented dairy products: current advancements and future challenges. Advances in Dairy Microbial Products 2022. [DOI: 10.1016/b978-0-323-85793-2.00011-4] [Reference Citation Analysis]
13 Rendón-rosales MÁ, Torres-llanez MJ, Mazorra-manzano MA, González-córdova AF, Hernández-mendoza A, Vallejo-cordoba B. In vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with Lactococcus lactis NRRL B-50571 and NRRL B-50572. LWT 2022;154:112581. [DOI: 10.1016/j.lwt.2021.112581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhou P, Liu Q, Wu T, Miao Q, Shang S, Wang H, Chen Z, Wang S, Wang H. Systematic Comparison and Comprehensive Evaluation of 80 Amino Acid Descriptors in Peptide QSAR Modeling. J Chem Inf Model 2021;61:1718-31. [DOI: 10.1021/acs.jcim.0c01370] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 20.0] [Reference Citation Analysis]
15 Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021;20:1150-87. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
16 Cerrato A, Aita SE, Montone CM, Capriotti AL, Piovesana S, Laganà A. Methodologies for extraction and separation of short-chain bioactive peptides. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00002-9] [Reference Citation Analysis]
17 Yu Y, Yu W, Jin Y. Peptidomic analysis of milk fermented by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Food Hydrocolloids for Health 2021;1:100033. [DOI: 10.1016/j.fhfh.2021.100033] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Liu K, Li X, Luo J, Zha X. Bioactivities. Food Hydrocolloids 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Reference Citation Analysis]
19 Kamran F, Phillips M, Reddy N. Functional properties of Australian blue lupin ( Lupinus angustifolius ) protein and biological activities of protein hydrolysates. Legume Science 2021;3. [DOI: 10.1002/leg3.65] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
20 Kilari BP, Mudgil P, Azimullah S, Bansal N, Ojha S, Maqsood S. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats. J Dairy Sci 2021;104:1304-17. [PMID: 33272578 DOI: 10.3168/jds.2020-19412] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
21 Cerrato A, Aita SE, Cavaliere C, Laganà A, Montone CM, Piovesana S, Zenezini Chiozzi R, Capriotti AL. Comprehensive identification of native medium-sized and short bioactive peptides in sea bass muscle. Food Chem 2021;343:128443. [PMID: 33129615 DOI: 10.1016/j.foodchem.2020.128443] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
22 Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020;64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
23 Xiao C, Zhou F, Zheng L, Cai Y, Su G, Luo D, Zhao M. Chicken breast-derived alcohol dehydrogenase-activating peptides in response to physicochemical changes and digestion simulation: The vital role of hydrophobicity. Food Research International 2020;136:109592. [DOI: 10.1016/j.foodres.2020.109592] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 Banerjee M, Khursheed R, Yadav AK, Singh SK, Gulati M, Pandey DK, Prabhakar PK, Kumar R, Porwal O, Awasthi A, Kumari Y, Kaur G, Ayinkamiye C, Prashar R, Mankotia D, Pandey NK. A Systematic Review on Synthetic Drugs and Phytopharmaceuticals Used to Manage Diabetes. Curr Diabetes Rev 2020;16:340-56. [PMID: 31438829 DOI: 10.2174/1573399815666190822165141] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
25 Song W, Kong X, Hua Y, Chen Y, Zhang C, Chen Y. Identification of antibacterial peptides generated from enzymatic hydrolysis of cottonseed proteins. LWT 2020;125:109199. [DOI: 10.1016/j.lwt.2020.109199] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
26 Toldrá F, Gallego M, Reig M, Aristoy M, Mora L. Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. J Agric Food Chem 2020;68:12842-55. [DOI: 10.1021/acs.jafc.9b08297] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 12.7] [Reference Citation Analysis]
27 Xiao C, Zhao M, Zhou F, Gallego M, Gao J, Toldrá F, Mora L. Isolation and identification of alcohol dehydrogenase stabilizing peptides from Alcalase digested chicken breast hydrolysates. Journal of Functional Foods 2020;64:103617. [DOI: 10.1016/j.jff.2019.103617] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Song W, Kong X, Hua Y, Li X, Zhang C, Chen Y. Antioxidant and antibacterial activity and in vitro digestion stability of cottonseed protein hydrolysates. LWT 2020;118:108724. [DOI: 10.1016/j.lwt.2019.108724] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
29 Fitzgerald RJ, Cermeño M, Khalesi M, Kleekayai T, Amigo-benavent M. Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods 2020;64:103636. [DOI: 10.1016/j.jff.2019.103636] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 20.0] [Reference Citation Analysis]
30 Qian B, Tian C, Huo J, Ding Z, Xu R, Zhu J, Yu L, Villarreal OD. Design and evaluation of four novel tripeptides as potent angiotensin converting enzyme (ACE) inhibitors with anti-hypertension activity. Peptides 2019;122:170171. [PMID: 31614165 DOI: 10.1016/j.peptides.2019.170171] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
31 Ashok A, Brijesha N, Aparna H. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. European Journal of Medicinal Chemistry 2019;180:99-110. [DOI: 10.1016/j.ejmech.2019.07.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
32 Li S, Bu T, Zheng J, Liu L, He G, Wu J. Preparation, Bioavailability, and Mechanism of Emerging Activities of Ile-Pro-Pro and Val-Pro-Pro. Compr Rev Food Sci Food Saf 2019;18:1097-110. [PMID: 33337010 DOI: 10.1111/1541-4337.12457] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
33 Fan M, Guo T, Li W, Chen J, Li F, Wang C, Shi Y, Li DX, Zhang S. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. Food Science and Human Wellness 2019;8:156-76. [DOI: 10.1016/j.fshw.2019.03.010] [Cited by in Crossref: 32] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
34 Galli BD, Baptista DP, Cavalheiro FG, Negrão F, Eberlin MN, Gigante ML. Peptide profile of Camembert-type cheese: Effect of heat treatment and adjunct culture Lactobacillus rhamnosus GG. Food Res Int 2019;123:393-402. [PMID: 31284991 DOI: 10.1016/j.foodres.2019.05.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
35 Xu Q, Hong H, Wu J, Yan X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology 2019;86:399-411. [DOI: 10.1016/j.tifs.2019.02.050] [Cited by in Crossref: 119] [Cited by in F6Publishing: 122] [Article Influence: 29.8] [Reference Citation Analysis]
36 Yan J, Zhao J, Yang R, Zhao W. Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol 2019;54:1909-19. [DOI: 10.1111/ijfs.14090] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
37 Mora L, Gallego M, Aristoy M, Reig M, Toldrá F. Bioactive peptides. Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds 2019. [DOI: 10.1016/b978-0-12-814174-8.00012-3] [Reference Citation Analysis]
38 Arnoldi A, Carmen L, Aiello G. Cholesterol-Reducing Foods: Proteins and Peptides. Encyclopedia of Food Chemistry. Elsevier; 2019. pp. 323-9. [DOI: 10.1016/b978-0-08-100596-5.21754-x] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
39 Giromini C, Cheli F, Rebucci R, Baldi A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J Dairy Sci 2019;102:929-42. [PMID: 30591343 DOI: 10.3168/jds.2018-15163] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
40 Xu Q, Yan X, Zhang Y, Wu J. Current understanding of transport and bioavailability of bioactive peptides derived from dairy proteins: a review. Int J Food Sci Technol 2019;54:1930-41. [DOI: 10.1111/ijfs.14055] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
41 A. Dave L. Human Gastrointestinal Endogenous Proteins: A Recently Discovered Source of Gut Modulatory Peptides. Novel Proteins for Food, Pharmaceuticals and Agriculture 2018. [DOI: 10.1002/9781119385332.ch3] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
42 Dornelles LP, Deodato de Souza MDF, da Silva PM, Procópio TF, Filho RSR, de Albuquerque Lima T, de Oliveira APS, Zingali RB, Paiva PMG, Pontual EV, Napoleão TH. Purification and characterization of a protease from the visceral mass of Mytella charruana and its evaluation to obtain antimicrobial peptides. Food Chemistry 2018;245:1169-75. [DOI: 10.1016/j.foodchem.2017.11.044] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
43 Ibrahim MA, Bester MJ, Neitz AW, Gaspar ARM. Tuber Storage Proteins as Potential Precursors of Bioactive Peptides: An In Silico Analysis. Int J Pept Res Ther 2019;25:437-46. [DOI: 10.1007/s10989-018-9688-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
44 Huppertz T, Fox P, Kelly A. The caseins: Structure, stability, and functionality. Proteins in Food Processing 2018. [DOI: 10.1016/b978-0-08-100722-8.00004-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
45 Miralles B, Hernández-ledesma B, Fernández-tomé S, Amigo L, Recio I. Health-related functional value of dairy proteins and peptides. Proteins in Food Processing 2018. [DOI: 10.1016/b978-0-08-100722-8.00021-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
46 Pooja K, Rani S, Prakash B. In silico approaches towards the exploration of rice bran proteins-derived angiotensin-I-converting enzyme inhibitory peptides. International Journal of Food Properties 2017. [DOI: 10.1080/10942912.2017.1368552] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
47 Nongonierma AB, FitzGerald RJ. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal Bioanal Chem 2018;410:3407-23. [PMID: 29260283 DOI: 10.1007/s00216-017-0793-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
48 Nongonierma AB, FitzGerald RJ. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. J Food Biochem 2019;43:e12451. [PMID: 31353485 DOI: 10.1111/jfbc.12451] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 11.7] [Reference Citation Analysis]
49 Nongonierma AB, Fitzgerald RJ. Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science & Technology 2017;69:289-305. [DOI: 10.1016/j.tifs.2017.03.003] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 11.8] [Reference Citation Analysis]
50 Taniguchi M, Kawabe J, Toyoda R, Namae T, Ochiai A, Saitoh E, Tanaka T. Cationic peptides from peptic hydrolysates of rice endosperm protein exhibit antimicrobial, LPS-neutralizing, and angiogenic activities. Peptides 2017;97:70-8. [DOI: 10.1016/j.peptides.2017.09.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
51 Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr 2018;58:3097-129. [PMID: 29020461 DOI: 10.1080/10408398.2017.1352564] [Cited by in Crossref: 70] [Cited by in F6Publishing: 53] [Article Influence: 11.7] [Reference Citation Analysis]
52 de Castro RJS, Domingues MAF, Ohara A, Okuro PK, dos Santos JG, Brexó RP, Sato HH. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structure 2017;14:17-29. [DOI: 10.1016/j.foostr.2017.05.004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 11.3] [Reference Citation Analysis]
53 Taniguchi M, Kameda M, Namae T, Ochiai A, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. Journal of Functional Foods 2017;34:287-96. [DOI: 10.1016/j.jff.2017.04.046] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
54 Taniguchi M, Saito K, Nomoto T, Namae T, Ochiai A, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic and amphipathic peptides from soybean proteins: Multifunctional Cationic and Amphipathic Peptides from Soybean Proteins. Biopolymers 2017;108:e23023. [DOI: 10.1002/bip.23023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
55 Toldrá F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem 2018;267:395-404. [PMID: 29934183 DOI: 10.1016/j.foodchem.2017.06.119] [Cited by in Crossref: 149] [Cited by in F6Publishing: 156] [Article Influence: 24.8] [Reference Citation Analysis]
56 Taniguchi M, Ochiai A. Characterization and production of multifunctional cationic peptides derived from rice proteins. Bioscience, Biotechnology, and Biochemistry 2017;81:634-50. [DOI: 10.1080/09168451.2016.1277944] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
57 Pooja K, Rani S, Kanwate B, Pal GK. Physico-chemical, Sensory and Toxicity Characteristics of Dipeptidyl Peptidase-IV Inhibitory Peptides from Rice Bran-derived Globulin Using Computational Approaches. Int J Pept Res Ther 2017;23:519-29. [DOI: 10.1007/s10989-017-9586-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
58 Zhang D, Chen L, Zhang M, Zhang Y, Fang G, Jiang T. Improved peptide generation from milk fermented by heat-shocked Lactobacillus helveticus. Int J Food Sci Technol 2017;52:366-73. [DOI: 10.1111/ijfs.13289] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
59 Iwaniak A, Minkiewicz P, Darewicz M, Hrynkiewicz M. Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches. Food Res Int 2016;89:27-38. [PMID: 28460914 DOI: 10.1016/j.foodres.2016.08.010] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 7.6] [Reference Citation Analysis]
60 Liu M, Wang Y, Liu Y, Ruan R. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review. Food Res Int 2016;89:63-73. [PMID: 28460959 DOI: 10.1016/j.foodres.2016.08.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
61 Iwaniak A, Minkiewicz P, Darewicz M, Sieniawski K, Starowicz P. BIOPEP database of sensory peptides and amino acids. Food Res Int 2016;85:155-61. [PMID: 29544830 DOI: 10.1016/j.foodres.2016.04.031] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 13.3] [Reference Citation Analysis]
62 Nongonierma AB, FitzGerald RJ. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides 2016;79:1-7. [PMID: 26988873 DOI: 10.1016/j.peptides.2016.03.005] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 11.0] [Reference Citation Analysis]
63 Nongonierma AB, Fitzgerald RJ. Learnings from quantitative structure–activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: a review. RSC Adv 2016;6:75400-13. [DOI: 10.1039/c6ra12738j] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 9.0] [Reference Citation Analysis]