BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bhusal RP, Eaton JRO, Chowdhury ST, Power CA, Proudfoot AEI, Stone MJ, Bhattacharya S. Evasins: Tick Salivary Proteins that Inhibit Mammalian Chemokines. Trends Biochem Sci 2020;45:108-22. [PMID: 31679840 DOI: 10.1016/j.tibs.2019.10.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Aryal P, Devkota SR, Jeevarajah D, Law R, Payne RJ, Bhusal RP, Stone MJ. Swapping N-terminal regions among tick evasins reveals cooperative interactions influencing chemokine binding and selectivity. J Biol Chem 2022;:102382. [PMID: 35973511 DOI: 10.1016/j.jbc.2022.102382] [Reference Citation Analysis]
2 Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022;20:818-53. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Reference Citation Analysis]
3 Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022;20:818-55. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Reference Citation Analysis]
4 Bhusal RP, Aryal P, Devkota SR, Pokhrel R, Gunzburg MJ, Foster SR, Lim HD, Payne RJ, Wilce MCJ, Stone MJ. Structure-guided engineering of tick evasins for targeting chemokines in inflammatory diseases. Proc Natl Acad Sci U S A 2022;119:e2122105119. [PMID: 35217625 DOI: 10.1073/pnas.2122105119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Bhattacharya S, Nuttall PA. Phylogenetic Analysis Indicates That Evasin-Like Proteins of Ixodid Ticks Fall Into Three Distinct Classes. Front Cell Infect Microbiol 2021;11:769542. [PMID: 34746035 DOI: 10.3389/fcimb.2021.769542] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021;11:769574. [PMID: 34722347 DOI: 10.3389/fcimb.2021.769574] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Anderson C, Brissette CA. The Brilliance of Borrelia: Mechanisms of Host Immune Evasion by Lyme Disease-Causing Spirochetes. Pathogens 2021;10:281. [PMID: 33801255 DOI: 10.3390/pathogens10030281] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
8 Pienaar R, de Klerk DG, de Castro MH, Featherston J, Mans BJ. De novo assembled salivary gland transcriptome and expression pattern analyses for Rhipicephalus evertsi evertsi Neuman, 1897 male and female ticks. Sci Rep 2021;11:1642. [PMID: 33452281 DOI: 10.1038/s41598-020-80454-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Handel TM, Dyer DP. Perspectives on the Biological Role of Chemokine:Glycosaminoglycan Interactions. J Histochem Cytochem 2021;69:87-91. [PMID: 33285085 DOI: 10.1369/0022155420977971] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
10 Denisov SS, Ramírez-Escudero M, Heinzmann ACA, Ippel JH, Dawson PE, Koenen RR, Hackeng TM, Janssen BJC, Dijkgraaf I. Structural characterization of anti-CCL5 activity of the tick salivary protein evasin-4. J Biol Chem 2020;295:14367-78. [PMID: 32817341 DOI: 10.1074/jbc.RA120.013891] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
11 Aounallah H, Bensaoud C, M'ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol 2020;11:583845. [PMID: 33072132 DOI: 10.3389/fimmu.2020.583845] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
12 Darlot B, Eaton JRO, Geis-Asteggiante L, Yakala GK, Karuppanan K, Davies G, Robinson CV, Kawamura A, Bhattacharya S. Engineered anti-inflammatory peptides inspired by mapping an evasin-chemokine interaction. J Biol Chem 2020;295:10926-39. [PMID: 32471866 DOI: 10.1074/jbc.RA120.014103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Franck C, Foster SR, Johansen-Leete J, Chowdhury S, Cielesh M, Bhusal RP, Mackay JP, Larance M, Stone MJ, Payne RJ. Semisynthesis of an evasin from tick saliva reveals a critical role of tyrosine sulfation for chemokine binding and inhibition. Proc Natl Acad Sci U S A 2020;117:12657-64. [PMID: 32461364 DOI: 10.1073/pnas.2000605117] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
14 Hernaez B, Alcamí A. Virus-encoded cytokine and chemokine decoy receptors. Curr Opin Immunol 2020;66:50-6. [PMID: 32408109 DOI: 10.1016/j.coi.2020.04.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
15 Yaron JR, Zhang L, Guo Q, Burgin M, Schutz LN, Awo E, Wise L, Krause KL, Ildefonso CJ, Kwiecien JM, Juby M, Rahman MM, Chen H, Moyer RW, Alcami A, McFadden G, Lucas AR. Deriving Immune Modulating Drugs from Viruses-A New Class of Biologics. J Clin Med 2020;9:E972. [PMID: 32244484 DOI: 10.3390/jcm9040972] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]