BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Baumel-Alterzon S, Katz LS, Brill G, Garcia-Ocaña A, Scott DK. Nrf2: The Master and Captain of Beta Cell Fate. Trends Endocrinol Metab 2021;32:7-19. [PMID: 33243626 DOI: 10.1016/j.tem.2020.11.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Baumel-alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front Endocrinol 2022;13:1011187. [DOI: 10.3389/fendo.2022.1011187] [Reference Citation Analysis]
2 Song QX, Sun Y, Deng K, Mei JY, Chermansky CJ, Damaser MS. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat Rev Urol 2022. [PMID: 35974244 DOI: 10.1038/s41585-022-00621-1] [Reference Citation Analysis]
3 Katz LS, Brill G, Zhang P, Kumar A, Baumel-Alterzon S, Honig LB, Gómez-Banoy N, Karakose E, Tanase M, Doridot L, Alvarsson A, Davenport B, Wang P, Lambertini L, Stanley SA, Homann D, Stewart AF, Lo JC, Herman MA, Garcia-Ocaña A, Scott DK. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nat Commun 2022;13:4423. [PMID: 35908073 DOI: 10.1038/s41467-022-32162-x] [Reference Citation Analysis]
4 Dutta BJ, Singh S, Seksaria S, Das Gupta G, Singh A. Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol Res 2022;182:106358. [PMID: 35863719 DOI: 10.1016/j.phrs.2022.106358] [Reference Citation Analysis]
5 Huang Q, Zhang C, Dong S, Han J, Qu S, Xie T, Zhao H, Shi Y. Asafoetida exerts neuroprotective effect on oxidative stress induced apoptosis through PI3K/Akt/GSK3β/Nrf2/HO-1 pathway. Chin Med 2022;17. [DOI: 10.1186/s13020-022-00630-7] [Reference Citation Analysis]
6 Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022;27:4145. [DOI: 10.3390/molecules27134145] [Reference Citation Analysis]
7 Kaneto H, Kimura T, Shimoda M, Obata A, Sanada J, Fushimi Y, Matsuoka T, Kaku K. Molecular Mechanism of Pancreatic β-Cell Failure in Type 2 Diabetes Mellitus. Biomedicines 2022;10:818. [DOI: 10.3390/biomedicines10040818] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Stancic A, Saksida T, Markelic M, Vucetic M, Grigorov I, Martinovic V, Gajic D, Ivanovic A, Velickovic K, Savic N, Otasevic V, Srivastava S. Ferroptosis as a Novel Determinant of β-Cell Death in Diabetic Conditions. Oxidative Medicine and Cellular Longevity 2022;2022:1-19. [DOI: 10.1155/2022/3873420] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Kim M, Jeon J. Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. IJMS 2022;23:2846. [DOI: 10.3390/ijms23052846] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Eguchi N, Toribio AJ, Alexander M, Xu I, Whaley DL, Hernandez LF, Dafoe D, Ichii H. Dysregulation of β-Cell Proliferation in Diabetes: Possibilities of Combination Therapy in the Development of a Comprehensive Treatment. Biomedicines 2022;10:472. [DOI: 10.3390/biomedicines10020472] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022;11:235. [PMID: 35204118 DOI: 10.3390/antiox11020235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Seok JH, Kim DH, Kim HJ, Jo HH, Kim EY, Jeong J, Park YS, Lee SH, Kim DJ, Nam SY, Lee BJ, Lee HJ. Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation. J Vet Sci 2022;23:e74. [DOI: 10.4142/jvs.22097] [Reference Citation Analysis]
13 He C, Sun J, Yang D, He W, Wang J, Qin D, Zhang H, Cai H, Liu Y, Li N, Hua J, Peng S. Nrf2 activation mediates the protection of mouse Sertoli Cells damage under acute heat stress conditions. Theriogenology 2022;177:183-94. [PMID: 34715543 DOI: 10.1016/j.theriogenology.2021.10.009] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules 2021;26:7658. [PMID: 34946740 DOI: 10.3390/molecules26247658] [Reference Citation Analysis]
15 Luo Z, Wan Q, Han Y, Li Z, Li B. CAPE-pNO2 ameliorates diabetic brain injury through modulating Alzheimer's disease key proteins, oxidation, inflammation and autophagy via a Nrf2-dependent pathway. Life Sci 2021;287:119929. [PMID: 34743947 DOI: 10.1016/j.lfs.2021.119929] [Reference Citation Analysis]
16 Yan X, Shen Z, Yu D, Zhao C, Zou H, Ma B, Dong W, Chen W, Huang D, Yu Z. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med 2022;178:59-75. [PMID: 34823019 DOI: 10.1016/j.freeradbiomed.2021.11.030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
17 Bosma KJ, Andrei SR, Katz LS, Smith AA, Dunn JC, Ricciardi VF, Ramirez MA, Baumel-Alterzon S, Pace WA, Carroll DT, Overway EM, Wolf EM, Kimple ME, Sheng Q, Scott DK, Breyer RM, Gannon M. Pharmacological blockade of the EP3 prostaglandin E2 receptor in the setting of type 2 diabetes enhances β-cell proliferation and identity and relieves oxidative damage. Mol Metab 2021;54:101347. [PMID: 34626853 DOI: 10.1016/j.molmet.2021.101347] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Ikegami H, Babaya N, Noso S. β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J Diabetes Investig 2021;12:1526-39. [PMID: 33993642 DOI: 10.1111/jdi.13576] [Reference Citation Analysis]
19 Liu X, Li T, Liu Y, Sun S, Liu D. Nuclear factor erythroid 2-related factor 2 potentiates the generation of inflammatory cytokines by intestinal epithelial cells during hyperoxia by inducing the expression of interleukin 17D. Toxicology 2021;457:152820. [PMID: 34023435 DOI: 10.1016/j.tox.2021.152820] [Reference Citation Analysis]
20 Wu T, Wang J, Zhang Y, Shao Y, Li X, Guo Y, Dong W, Wang L, Chen F, Han X. Lentinan protects against pancreatic β-cell failure in chronic ethanol consumption-induced diabetic mice via enhancing β-cell antioxidant capacity. J Cell Mol Med 2021. [PMID: 33837638 DOI: 10.1111/jcmm.16529] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Katz LS, Baumel-Alterzon S, Scott DK, Herman MA. Adaptive and maladaptive roles for ChREBP in the liver and pancreatic islets. J Biol Chem 2021;296:100623. [PMID: 33812993 DOI: 10.1016/j.jbc.2021.100623] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
22 Kolb H, Martin S, Kempf K. Coffee and Lower Risk of Type 2 Diabetes: Arguments for a Causal Relationship. Nutrients 2021;13:1144. [PMID: 33807132 DOI: 10.3390/nu13041144] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Kim YK, Sussel L, Davidson HW. Inherent Beta Cell Dysfunction Contributes to Autoimmune Susceptibility. Biomolecules 2021;11:512. [PMID: 33808310 DOI: 10.3390/biom11040512] [Reference Citation Analysis]