1 |
Wang H, Ma L, Jin Z, Cui Z, Yang H, Miao M. Highly sensitive fluorescence detection of tobacco mosaic virus RNA based on polysaccharide and ARGET ATRP double signal amplification. Talanta 2023;257:124360. [PMID: 36801566 DOI: 10.1016/j.talanta.2023.124360] [Reference Citation Analysis]
|
2 |
Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Mukhtar M, Almanghadim HG, Sargazi S, Rahdar A, Díez-Pascual AM. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int J Biol Macromol 2023;:124103. [PMID: 36948344 DOI: 10.1016/j.ijbiomac.2023.124103] [Reference Citation Analysis]
|
3 |
Esmaelpourfarkhani M, Mohammad Danesh N, Ramezani M, Alibolandi M, Khakshour Abdolabadi A, Abnous K, Mohammad Taghdisi S. Split aptamer-based fluorescent biosensor for ultrasensitive detection of cocaine using N-methyl mesoporphyrin IX as fluorophore. Microchemical Journal 2023. [DOI: 10.1016/j.microc.2023.108630] [Reference Citation Analysis]
|
4 |
Chovelon B, Peyrin E, Ragot M, Salem N, Nguyen TG, Auvray B, Henry M, Petrillo MA, Fiore E, Bessy Q, Faure P, Ravelet C. Nile blue as reporter dye in salt aggregation based-colorimetric aptasensors for peptide, small molecule and metal ion detection. Anal Chim Acta 2023;1243:340840. [PMID: 36697182 DOI: 10.1016/j.aca.2023.340840] [Reference Citation Analysis]
|
5 |
Qi X, Zhang L, Wang X, Chen S, Wang X. A label-free colorimetric aptasensor based on an engineered chimeric aptamer and Au@FeP nanocomposites for the detection of kanamycin. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109700] [Reference Citation Analysis]
|
6 |
Zhou J, Wang Y, Zhou C, Zheng L, Fu L. A ratiometric fluorescent aptasensor based on EXPAR to detect shellfish tropomyosin in food system. Food Control 2023;144:109380. [DOI: 10.1016/j.foodcont.2022.109380] [Reference Citation Analysis]
|
7 |
Liu Y, Guan B, Xu Z, Wu Y, Wang Y, Ning G. A fluorescent assay for sensitive detection of kanamycin by split aptamers and DNA-based copper/silver nanoclusters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023;286:121953. [DOI: 10.1016/j.saa.2022.121953] [Reference Citation Analysis]
|
8 |
Chi Z, Wang Q, Gu J. Recent advances in colorimetric sensors based on nanozymes with peroxidase-like activity. Analyst 2023;148:487-506. [PMID: 36484756 DOI: 10.1039/d2an01850k] [Reference Citation Analysis]
|
9 |
Zhan H, Yang S, Li C, Liu R, Chen W, Wang X, Zhao Y, Xu K. A highly sensitive competitive aptasensor for AFB(1) detection based on an exonuclease-assisted target recycling amplification strategy. Anal Methods 2022;15:70-8. [PMID: 36477094 DOI: 10.1039/d2ay01617f] [Reference Citation Analysis]
|
10 |
Moabelo KL, Lerga TM, Jauset-Rubio M, Sibuyi NRS, O'Sullivan CK, Meyer M, Madiehe AM. A Label-Free Gold Nanoparticles-Based Optical Aptasensor for the Detection of Retinol Binding Protein 4. Biosensors (Basel) 2022;12. [PMID: 36551028 DOI: 10.3390/bios12121061] [Reference Citation Analysis]
|
11 |
Liu Z, Deng K, Zhang H, Li C, Wang J, Huang H, Yi Q, Zhou H. Dual-mode photoelectrochemical/electrochemical sensor based on Z-scheme AgBr/AgI-Ag-CNTs and aptamer structure switch for the determination of kanamycin. Mikrochim Acta 2022;189:417. [PMID: 36242691 DOI: 10.1007/s00604-022-05523-y] [Reference Citation Analysis]
|
12 |
Xu R, Cheng Y, Qi X, Li X, Zhang Z, Chen L, Sun T, Gao Z, Zhu M. Target-induced gold nanoparticles colorimetric sensing coupled with aptamer for rapid and high-sensitivity detecting kanamycin. Analytica Chimica Acta 2022;1230:340377. [DOI: 10.1016/j.aca.2022.340377] [Reference Citation Analysis]
|
13 |
Pan J, Deng F, Zeng L, Liu Z, Chen J. Target-mediated competitive hybridization of hairpin probes for kanamycin detection based on exonuclease III cleavage and DNAzyme catalysis. Anal Bioanal Chem 2022. [PMID: 36178489 DOI: 10.1007/s00216-022-04354-3] [Reference Citation Analysis]
|
14 |
Gao X, Sun Z, Wang X, Zhang W, Xu D, Sun X, Guo Y, Xu S, Li F. Construction of a dual-model aptasensor based on G-quadruplexes generated via rolling circle amplification for visual/sensitive detection of kanamycin. Science of The Total Environment 2022;839:156276. [DOI: 10.1016/j.scitotenv.2022.156276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Ye H, Yang Z, Khan IM, Niazi S, Guo Y, Wang Z, Yang H. Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Crit Rev Food Sci Nutr 2022;:1-12. [PMID: 35507474 DOI: 10.1080/10408398.2022.2064810] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
16 |
Li J, Luo M, Yang H, Ma C, Cai R, Tan W. Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection. Anal Chem 2022. [PMID: 35420408 DOI: 10.1021/acs.analchem.2c01163] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
|
17 |
Ye T, Zhu D, Hao L, Yuan M, Cao H, Wu X, Yin F, Xu F. Poly-adenine-mediated spherical nucleic acids for interfacial recognition of kanamycin. Mikrochim Acta 2022;189:151. [PMID: 35316405 DOI: 10.1007/s00604-022-05235-3] [Reference Citation Analysis]
|
18 |
Divya, Dkhar DS, Kumari R, Mahapatra S, Kumar R, Chandra P. Ultrasensitive Aptasensors for the Detection of Viruses Based on Opto-Electrochemical Readout Systems. Biosensors (Basel) 2022;12:81. [PMID: 35200341 DOI: 10.3390/bios12020081] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|