BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li S, Pan H, Tan C, Sun Y, Song Y, Zhang X, Yang W, Wang X, Li D, Dai Y, Ma Q, Xu C, Zhu X, Kang L, Fu Y, Xu X, Shu J, Zhou N, Han F, Qin D, Huang W, Liu Z, Yan Q. Mitochondrial Dysfunctions Contribute to Hypertrophic Cardiomyopathy in Patient iPSC-Derived Cardiomyocytes with MT-RNR2 Mutation. Stem Cell Reports 2018;10:808-21. [PMID: 29456182 DOI: 10.1016/j.stemcr.2018.01.013] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Vučković S, Dinani R, Nollet EE, Kuster DWD, Buikema JW, Houtkooper RH, Nabben M, van der Velden J, Goversen B. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling. Stem Cell Res Ther 2022;13. [DOI: 10.1186/s13287-022-03021-9] [Reference Citation Analysis]
2 Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, Kou M, Chiang Z, Li Z, Lian Q. Mitochondrial Cardiomyopathy: Molecular Epidemiology, Diagnosis, Models, and Therapeutic Management. Cells 2022;11:3511. [DOI: 10.3390/cells11213511] [Reference Citation Analysis]
3 Jerome MS, Nanjappa DP, Chakraborty A, Chakrabarty S. Molecular etiology of defective nuclear and mitochondrial ribosome biogenesis: Clinical phenotypes and therapy. Biochimie 2022. [DOI: 10.1016/j.biochi.2022.11.001] [Reference Citation Analysis]
4 Muñoz JJAM, Dariolli R, da Silva CM, Neri EA, Valadão IC, Turaça LT, Lima VM, de Carvalho MLP, Velho MR, Sobie EA, Krieger JE. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther 2022;13:437. [PMID: 36056380 DOI: 10.1186/s13287-022-03138-x] [Reference Citation Analysis]
5 Nicholson MW, Ting CY, Chan DZH, Cheng YC, Lee YC, Hsu CC, Huang CY, Hsieh PCH. Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells 2022;11:1853. [PMID: 35681550 DOI: 10.3390/cells11111853] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ramos TAR, Kim SY, Gillette TG, Hill JA, Lavandero S, do Rêgo TG, Maracaja-coutinho V. Single cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development.. [DOI: 10.1101/2022.04.29.490042] [Reference Citation Analysis]
7 Chen H, Chen Q, Zhu Y, Yuan K, Li H, Zhang B, Jia Z, Zhou H, Fan M, Qiu Y, Zhuang Q, Lei Z, Li M, Huang W, Liang L, Yan Q, Wang C. MAP3K1 Variant Causes Hyperactivation of Wnt4/β-Catenin/FOXL2 Signaling Contributing to 46,XY Disorders/Differences of Sex Development. Front Genet 2022;13:736988. [DOI: 10.3389/fgene.2022.736988] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Pavez-Giani MG, Cyganek L. Recent Advances in Modeling Mitochondrial Cardiomyopathy Using Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021;9:800529. [PMID: 35083221 DOI: 10.3389/fcell.2021.800529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yang B, Lowenthal J, Tomaselli GF, Tung L. Human iPSC models of cardiac electrophysiology and arrhythmia. iPSCs - State of the Science 2022. [DOI: 10.1016/b978-0-323-85767-3.00006-2] [Reference Citation Analysis]
10 Torraco A, Maroofian R, Rötig A, Bertini E, Ghezzi D, Carrozzo R, Diodato D. Response to: Phenotypic heterogeneity of Leigh syndrome due to NDUFA12 variants is multicausal. Hum Mutat 2022;43:99-100. [PMID: 34888984 DOI: 10.1002/humu.24303] [Reference Citation Analysis]
11 Bekhite MM, Schulze PC. Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021;10:3483. [PMID: 34943991 DOI: 10.3390/cells10123483] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chen J, Liu HF, Qiao LB, Wang FB, Wang L, Lin Y, Liu J. Global RNA editing identification and characterization during human pluripotent-to-cardiomyocyte differentiation. Mol Ther Nucleic Acids 2021;26:879-91. [PMID: 34760335 DOI: 10.1016/j.omtn.2021.10.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Simeon M, Dangwal S, Sachinidis A, Doss MX. Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now. Cells 2021;10:3112. [PMID: 34831333 DOI: 10.3390/cells10113112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Moreira JD, Gopal DM, Kotton DN, Fetterman JL. Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do? Genes (Basel) 2021;12:1668. [PMID: 34828274 DOI: 10.3390/genes12111668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Kosanke M, Davenport C, Szepes M, Wiehlmann L, Kohrn T, Dorda M, Gruber J, Menge K, Sievert M, Melchert A, Gruh I, Göhring G, Martin U. iPSC culture expansion selects against putatively actionable mutations in the mitochondrial genome. Stem Cell Reports 2021;16:2488-502. [PMID: 34560000 DOI: 10.1016/j.stemcr.2021.08.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Tokuyama T, Ahmed RE, Chanthra N, Anzai T, Uosaki H. Disease Modeling of Mitochondrial Cardiomyopathy Using Patient-Specific Induced Pluripotent Stem Cells. Biology (Basel) 2021;10:981. [PMID: 34681080 DOI: 10.3390/biology10100981] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells 2021;10:2319. [PMID: 34571968 DOI: 10.3390/cells10092319] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
18 Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021;116:49. [PMID: 34392401 DOI: 10.1007/s00395-021-00889-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 McKnight CL, Low YC, Elliott DA, Thorburn DR, Frazier AE. Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned? Int J Mol Sci 2021;22:7730. [PMID: 34299348 DOI: 10.3390/ijms22147730] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
20 Gharanei M, Shafaattalab S, Sangha S, Gunawan M, Laksman Z, Hove-Madsen L, Tibbits GF. Atrial-specific hiPSC-derived cardiomyocytes in drug discovery and disease modeling. Methods 2021:S1046-2023(21)00161-4. [PMID: 34144175 DOI: 10.1016/j.ymeth.2021.06.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zhou Q, Zheng Y, Sun Y. Neddylation regulation of mitochondrial structure and functions. Cell Biosci 2021;11:55. [PMID: 33731189 DOI: 10.1186/s13578-021-00569-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
22 Lester Sequiera G, Srivastava A, Alagarsamy KN, Rockman-Greenberg C, Dhingra S. Generation and Evaluation of Isogenic iPSC as a Source of Cell Replacement Therapies in Patients with Kearns Sayre Syndrome. Cells 2021;10:568. [PMID: 33807701 DOI: 10.3390/cells10030568] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
23 Kargaran PK, Mosqueira D, Kozicz T. Mitochondrial Medicine: Genetic Underpinnings and Disease Modeling Using Induced Pluripotent Stem Cell Technology. Front Cardiovasc Med 2020;7:604581. [PMID: 33585579 DOI: 10.3389/fcvm.2020.604581] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2021;595:1025-61. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
25 Hua TR, Zhang SY. Cardiomyopathies in China: A 2018-2019 state-of-the-art review. Chronic Dis Transl Med 2020;6:224-38. [PMID: 33336168 DOI: 10.1016/j.cdtm.2020.05.006] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Paci M, Penttinen K, Pekkanen-Mattila M, Koivumäki JT. Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2020;77:300-16. [PMID: 33323698 DOI: 10.1097/FJC.0000000000000972] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Branco MA, Cabral JMS, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020;7:E92. [PMID: 32785039 DOI: 10.3390/bioengineering7030092] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020;21:E4354. [PMID: 32575374 DOI: 10.3390/ijms21124354] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
29 Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2021;117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Chung H, Kim Y, Cho SM, Lee HJ, Park CH, Kim JY, Lee SH, Min PK, Yoon YW, Lee BK, Kim WS, Hong BK, Kim TH, Rim SJ, Kwon HM, Choi EY, Lee KA. Differential contributions of sarcomere and mitochondria-related multigene variants to the endophenotype of hypertrophic cardiomyopathy. Mitochondrion 2020;53:48-56. [PMID: 32380161 DOI: 10.1016/j.mito.2020.04.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Li Y, Li F, Zhang L, Zhang C, Peng H, Lan F, Peng S, Liu C, Guo J. Zinc Oxide Nanoparticles Induce Mitochondrial Biogenesis Impairment and Cardiac Dysfunction in Human iPSC-Derived Cardiomyocytes. Int J Nanomedicine 2020;15:2669-83. [PMID: 32368048 DOI: 10.2147/IJN.S249912] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
32 Modi SR, Hämäläinen RH. iPSCs for modeling mtDNA diseases. Recent Advances in iPSC Disease Modeling, Volume 1 2020. [DOI: 10.1016/b978-0-12-822227-0.00003-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Wang X, Zheng H, Jia Z, Lei Z, Li M, Zhuang Q, Zhou H, Qiu Y, Fu Y, Yang X, Xi Y, Yan Q. Drosophila Prominin-like, a homolog of CD133, interacts with ND20 to maintain mitochondrial function. Cell Biosci 2019;9:101. [PMID: 31890150 DOI: 10.1186/s13578-019-0365-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
34 Hu SY, Zhuang QQ, Qiu Y, Zhu XF, Yan QF. Cell models and drug discovery for mitochondrial diseases. J Zhejiang Univ Sci B 2019;20:449-56. [PMID: 31090270 DOI: 10.1631/jzus.B1900196] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
35 Zhang C, He H, Hu X, Liu A, Huang D, Xu Y, Chen L, Xu D. Development and validation of a metastasis-associated prognostic signature based on single-cell RNA-seq in clear cell renal cell carcinoma. Aging (Albany NY) 2019;11:10183-202. [PMID: 31747386 DOI: 10.18632/aging.102434] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
36 Chen H, Yuan K, Zhang B, Jia Z, Chen C, Zhu Y, Sun Y, Zhou H, Huang W, Liang L, Yan Q, Wang C. A Novel Compound Heterozygous CYP17A1 Variant Causes 17α-Hydroxylase/17, 20-Lyase Deficiency. Front Genet 2019;10:996. [PMID: 31695722 DOI: 10.3389/fgene.2019.00996] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
37 Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019;20:E4381. [PMID: 31489928 DOI: 10.3390/ijms20184381] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
38 Li J, Rozwadowska N, Clark A, Fil D, Napierala JS, Napierala M. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich's ataxia cardiomyocytes. Stem Cell Res 2019;40:101529. [PMID: 31446150 DOI: 10.1016/j.scr.2019.101529] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
39 Lu L, Wu ZY, Li X, Han F. State-of-the-art: functional fluorescent probes for bioimaging and pharmacological research. Acta Pharmacol Sin 2019;40:717-23. [PMID: 30487651 DOI: 10.1038/s41401-018-0190-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
40 Prajapati C, Aalto-setälä K. Modelling of Genetic Cardiac Diseases. Visions of Cardiomyocyte - Fundamental Concepts of Heart Life and Disease [Working Title] 2019. [DOI: 10.5772/intechopen.84965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
41 Sewanan LR, Campbell SG. Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells. J Physiol 2020;598:2909-22. [PMID: 30624779 DOI: 10.1113/JP276753] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 5.7] [Reference Citation Analysis]
42 Lau E, Paik DT, Wu JC. Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. Annu Rev Pathol 2019;14:395-419. [PMID: 30379619 DOI: 10.1146/annurev-pathmechdis-012418-013046] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
43 Eschenhagen T, Carrier L. Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes-a systematic review. Pflugers Arch. 2019;471:755-768. [PMID: 30324321 DOI: 10.1007/s00424-018-2214-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 9.5] [Reference Citation Analysis]
44 Li D, Sun Y, Zhuang Q, Song Y, Wu B, Jia Z, Pan H, Zhou H, Hu S, Zhang B, Qiu Y, Dai Y, Chen S, Xu X, Zhu X, Lin A, Huang W, Liu Z, Yan Q. Mitochondrial dysfunction caused by m.2336T>C mutation with hypertrophic cardiomyopathy in cybrid cell lines. Mitochondrion 2019;46:313-20. [PMID: 30196098 DOI: 10.1016/j.mito.2018.08.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]