BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: He X, Pei Q, Xu T, Zhang X. Smartphone-based tape sensors for multiplexed rapid urinalysis. Sensors and Actuators B: Chemical 2020;304:127415. [DOI: 10.1016/j.snb.2019.127415] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu Z, Wang Y, Niu B, Yang Y, Fang F, Song Y. Simultaneous enrichment and separation based on ion concentration polarization effect on a paper based analytical device. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339844] [Reference Citation Analysis]
2 Yang YJ, Gao ZF. Superwettable Biosensor for Disease Biomarker Detection. Front Bioeng Biotechnol 2022;10:872984. [DOI: 10.3389/fbioe.2022.872984] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Rahman MM, Uddin MJ, Hong JH, Bhuiyan NH, Shim JS. Lab-in-a-Cup (LiC): An autonomous fluidic device for daily urinalysis using smartphone. Sensors and Actuators B: Chemical 2022;355:131336. [DOI: 10.1016/j.snb.2021.131336] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
4 Sun Y, Shu T, Ma J, Dai Q, Peng P, Zhou Z, Zhou X, Su L, Zhang X. Rational Design of ZIF-8 for Constructing Luminescent Biosensors with Glucose Oxidase and AIE-Type Gold Nanoclusters. Anal Chem 2022. [PMID: 35137578 DOI: 10.1021/acs.analchem.1c05599] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
5 Guo D, Li G, Miao J, Shen Y. A smartphone-based calibration-free portable urinalysis device. J Cent South Univ 2021;28:3829-37. [DOI: 10.1007/s11771-021-4883-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Zhang Z, Shi Q, He T, Guo X, Dong B, Lee J, Lee C. Artificial intelligence of toilet (AI-Toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor. Nano Energy 2021;90:106517. [DOI: 10.1016/j.nanoen.2021.106517] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
7 He X, Fan C, Xu T, Zhang X. Biospired Janus Silk E-Textiles with Wet-Thermal Comfort for Highly Efficient Biofluid Monitoring. Nano Lett 2021;21:8880-7. [PMID: 34647458 DOI: 10.1021/acs.nanolett.1c03426] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
8 Hassan MM, Xu Y, Zareef M, Li H, Rong Y, Chen Q. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: a review. Crit Rev Food Sci Nutr 2021;:1-22. [PMID: 34565253 DOI: 10.1080/10408398.2021.1980765] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Zhou Z, Shu T, Sun Y, Si H, Peng P, Su L, Zhang X. Luminescent wearable biosensors based on gold nanocluster networks for "turn-on" detection of Uric acid, glucose and alcohol in sweat. Biosens Bioelectron 2021;192:113530. [PMID: 34325319 DOI: 10.1016/j.bios.2021.113530] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
10 Djeghim F, Bourekoua H, Różyło R, Bieńczak A, Tanaś W, Zidoune MN. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Applied Sciences 2021;11:4605. [DOI: 10.3390/app11104605] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
11 Kap Ö, Kılıç V, Hardy JG, Horzum N. Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes. Analyst 2021;146:2784-806. [PMID: 33949379 DOI: 10.1039/d0an02031a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
12 Saranchina NV, Slizhov YG, Vodova YM, Murzakasymova NS, Ilyina AM, Gavrilenko NA, Gavrilenko MA. Smartphone-based colorimetric determination of fluoride anions using polymethacrylate optode. Talanta 2021;226:122103. [PMID: 33676659 DOI: 10.1016/j.talanta.2021.122103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yang Y, Xu LP, Zhang X, Wang S. Bioinspired wettable-nonwettable micropatterns for emerging applications. J Mater Chem B 2020;8:8101-15. [PMID: 32785360 DOI: 10.1039/d0tb01382j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
14 Jain S, Nehra M, Kumar R, Dilbaghi N, Hu T, Kumar S, Kaushik A, Li CZ. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron 2021;179:113074. [PMID: 33596516 DOI: 10.1016/j.bios.2021.113074] [Cited by in Crossref: 20] [Cited by in F6Publishing: 68] [Article Influence: 20.0] [Reference Citation Analysis]
15 Vaquer A, Barón E, de la Rica R. Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers. ACS Sens 2021;6:130-6. [PMID: 33371672 DOI: 10.1021/acssensors.0c01980] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
16 Pan MM, Wang YF, Wang L, Yu X, Xu L. Recent advances in visual detection for cancer biomarkers and infectious pathogens. J Mater Chem B 2021;9:35-52. [PMID: 33225338 DOI: 10.1039/d0tb01883j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wang Y, Liu F, Yang Y, Xu L. Droplet evaporation-induced analyte concentration toward sensitive biosensing. Mater Chem Front 2021;5:5639-52. [DOI: 10.1039/d1qm00500f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
18 Hussain S, Park SY. Sweat-Based Noninvasive Skin-Patchable Urea Biosensors with Photonic Interpenetrating Polymer Network Films Integrated into PDMS Chips. ACS Sens 2020;5:3988-98. [PMID: 33259201 DOI: 10.1021/acssensors.0c01757] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
19 Durairaj S, Sidhureddy B, Chen A. Sensitive Electrochemical Analysis of Hydroxyproline in Achilles Tendon Collagen and Human Urine. J Electrochem Soc 2020;167:167511. [DOI: 10.1149/1945-7111/abcbb6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Xing Y, Zhu Q, Zhou X, Qi P. A dual-functional smartphone-based sensor for colorimetric and chemiluminescent detection: A case study for fluoride concentration mapping. Sensors and Actuators B: Chemical 2020;319:128254. [DOI: 10.1016/j.snb.2020.128254] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
21 Lin H, Lin J, Man Z, Jin H, Kutsanedzie FYH, Chen Q. Development of Colorimetric Detection of 2,4,5-Trimethyloxazole in Volatile Organic Compounds Based on Porphyrin Complexes for Vinegar Storage Time Discrimination. Food Anal Methods 2020;13:2192-203. [DOI: 10.1007/s12161-020-01819-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Lee H, Bae J. Design of Appropriate Technology-Assisted Urine Tester Enabling Remote and Long-Term Monitoring of Health Conditions. Sustainability 2020;12:5165. [DOI: 10.3390/su12125165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Liu C, Xu T, Wang D, Zhang X. The role of sampling in wearable sweat sensors. Talanta 2020;212:120801. [PMID: 32113563 DOI: 10.1016/j.talanta.2020.120801] [Cited by in Crossref: 26] [Cited by in F6Publishing: 47] [Article Influence: 13.0] [Reference Citation Analysis]