BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Veliova M, Petcherski A, Liesa M, Shirihai OS. The biology of lipid droplet-bound mitochondria. Semin Cell Dev Biol 2020;108:55-64. [PMID: 32446655 DOI: 10.1016/j.semcdb.2020.04.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang L, Ma Y, Li Z, Li S, Lin W. A multifunctional fluorescent probe for dual-color visualization of intracellular mitochondria and lipid droplets and monitoring of SO2 in vivo. Chemical Engineering Journal 2023;451:139023. [DOI: 10.1016/j.cej.2022.139023] [Reference Citation Analysis]
2 Bai H, Fang Y, Cao H, Xing C, Zhang C, Zhuang Y, Guo X, Li G, Hu M, Hu G, Yang F. Inhibition of the BNIP3 / NIX ‐dependent mitophagy aggravates copper‐induced mitochondrial dysfunction in duck renal tubular epithelial cells. Environmental Toxicology 2022. [DOI: 10.1002/tox.23704] [Reference Citation Analysis]
3 Ke J, Pan J, Lin H, Gu J. Diabetic cardiomyopathy: a brief summary on lipid toxicity. ESC Heart Failure 2022. [DOI: 10.1002/ehf2.14224] [Reference Citation Analysis]
4 Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Lipid droplet - mitochondria coupling: A novel lipid metabolism regulatory hub in diabetic nephropathy. Front Endocrinol 2022;13. [DOI: 10.3389/fendo.2022.1017387] [Reference Citation Analysis]
5 Berardi DE, Bock-Hughes A, Terry AR, Drake LE, Bozek G, Macleod KF. Lipid droplet turnover at the lysosome inhibits growth of hepatocellular carcinoma in a BNIP3-dependent manner. Sci Adv 2022;8:eabo2510. [PMID: 36223464 DOI: 10.1126/sciadv.abo2510] [Reference Citation Analysis]
6 Guyard V, Monteiro-Cardoso VF, Omrane M, Sauvanet C, Houcine A, Boulogne C, Ben Mbarek K, Vitale N, Faklaris O, El Khallouki N, Thiam AR, Giordano F. ORP5 and ORP8 orchestrate lipid droplet biogenesis and maintenance at ER-mitochondria contact sites. J Cell Biol 2022;221:e202112107. [PMID: 35969857 DOI: 10.1083/jcb.202112107] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Sharma G, Zaman M, Sabouny R, Joel M, Martens K, Martino D, de Koning AJ, Pfeffer G, Shutt TE. Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss. F1000Res 2021;10:606. [DOI: 10.12688/f1000research.53230.2] [Reference Citation Analysis]
8 Fehér J, Élő Á, István L, Nagy ZZ, Radák Z, Scuderi G, Artico M, Kovács I. Microbiota mitochondria disorders as hubs for early age-related macular degeneration. Geroscience 2022. [PMID: 35978068 DOI: 10.1007/s11357-022-00620-5] [Reference Citation Analysis]
9 Liu J, Wei Y, Jia W, Can C, Wang R, Yang X, Gu C, Liu F, Ji C, Ma D. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102452] [Reference Citation Analysis]
10 Alan L, Scorrano L. Shaping fuel utilization by mitochondria. Curr Biol 2022;32:R618-23. [PMID: 35728541 DOI: 10.1016/j.cub.2022.05.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Cui X, Wang J, Zhang Y, Wei J, Wang Y, Quiles JL. Plin5, a New Target in Diabetic Cardiomyopathy. Oxidative Medicine and Cellular Longevity 2022;2022:1-20. [DOI: 10.1155/2022/2122856] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Kakhlon O. ROS Modulation by Iron Chelators and Lipids: A Developing Anticancer Strategy. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2022. [DOI: 10.1007/978-981-15-9411-3_129] [Reference Citation Analysis]
13 Acín-Perez R, Petcherski A, Veliova M, Benador IY, Assali EA, Colleluori G, Cinti S, Brownstein AJ, Baghdasarian S, Livhits MJ, Yeh MW, Krishnan KC, Vergnes L, Winn NC, Padilla J, Liesa M, Sacks HS, Shirihai OS. Recruitment and remodeling of peridroplet mitochondria in human adipose tissue. Redox Biol 2021;46:102087. [PMID: 34411987 DOI: 10.1016/j.redox.2021.102087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Melentev PA, Ryabova EV, Surina NV, Zhmujdina DR, Komissarov AE, Ivanova EA, Boltneva NP, Makhaeva GF, Sliusarenko MI, Yatsenko AS, Mohylyak II, Matiytsiv NP, Shcherbata HR, Sarantseva SV. Loss of swiss cheese in Neurons Contributes to Neurodegeneration with Mitochondria Abnormalities, Reactive Oxygen Species Acceleration and Accumulation of Lipid Droplets in Drosophila Brain. Int J Mol Sci 2021;22:8275. [PMID: 34361042 DOI: 10.3390/ijms22158275] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Sharma G, Sabouny R, Joel M, Martens K, Martino D, de Koning AJ, Pfeffer G, Shutt TE. Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss. F1000Res 2021;10:606. [DOI: 10.12688/f1000research.53230.1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kim Y, Lindberg E, Bleck CKE, Glancy B. Reorganization of the Mitochondria-Organelle Interactome during Postnatal Development in Skeletal Muscle.. [DOI: 10.1101/2021.06.16.448433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Qi R, Han X, Wang J, Qiu X, Wang Q, Yang F. MicroRNA-489-3p promotes adipogenesis by targeting the Postn gene in 3T3-L1 preadipocytes. Life Sci 2021;278:119620. [PMID: 34004251 DOI: 10.1016/j.lfs.2021.119620] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
18 Tian M, Ge E, Dong B, Zuo Y, Zhao Y, Lin W. Intramolecular Spirocyclization Enables Design of a Single Fluorescent Probe for Monitoring the Interplay between Mitochondria and Lipid Droplets. Anal Chem 2021;93:3602-10. [PMID: 33557515 DOI: 10.1021/acs.analchem.0c05259] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
19 Sharma G, Saubouny R, Joel MM, Martens K, Martino D, de Koning AJ, Pfeffer G, Shutt TE. Characterization of a novel variant in the HR1 domain ofMFN2in a patient with ataxia, optic atrophy and sensorineural hearing loss.. [DOI: 10.1101/2021.01.11.426268] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
20 Kakhlon O. ROS Modulation by Iron Chelators and Lipids: A Developing Anticancer Strategy. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2021. [DOI: 10.1007/978-981-15-4501-6_129-1] [Reference Citation Analysis]
21 Yang H, Liu J. Structure and function of lipid droplets. Biochemistry of Lipids, Lipoproteins and Membranes 2021. [DOI: 10.1016/b978-0-12-824048-9.00006-7] [Reference Citation Analysis]
22 Morén B, Fryklund C, Stenkula K. Surface-associated lipid droplets: an intermediate site for lipid transport in human adipocytes? Adipocyte 2020;9:636-48. [PMID: 33108251 DOI: 10.1080/21623945.2020.1838684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Luo Y, Wang X, Cao Y. Transcriptomic analysis suggested the involvement of impaired lipid droplet biogenesis in graphene oxide-induced cytotoxicity in human umbilical vein endothelial cells. Chem Biol Interact 2021;333:109325. [PMID: 33221320 DOI: 10.1016/j.cbi.2020.109325] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]