BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cournia Z, Chatzigoulas A. Allostery in membrane proteins. Current Opinion in Structural Biology 2020;62:197-204. [DOI: 10.1016/j.sbi.2020.03.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Marcoli M, Agnati LF, Franco R, Cortelli P, Anderlini D, Guidolin D, Cervetto C, Maura G. Modulating brain integrative actions as a new perspective on pharmacological approaches to neuropsychiatric diseases. Front Endocrinol (Lausanne) 2022;13:1038874. [PMID: 36699033 DOI: 10.3389/fendo.2022.1038874] [Reference Citation Analysis]
2 Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022;434:167872. [PMID: 36354074 DOI: 10.1016/j.jmb.2022.167872] [Reference Citation Analysis]
3 Chatzigoulas A, Cournia Z. DREAMM: a web-based server for drugging protein-membrane interfaces as a novel workflow for targeted drug design. Bioinformatics 2022;38:5449-51. [PMID: 36355565 DOI: 10.1093/bioinformatics/btac680] [Reference Citation Analysis]
4 Kotzampasi DM, Premeti K, Papafotika A, Syropoulou V, Christoforidis S, Cournia Z, Leondaritis G. The orchestrated signaling by PI3Kα and PTEN at the membrane interface. Comput Struct Biotechnol J 2022;20:5607-21. [PMID: 36284707 DOI: 10.1016/j.csbj.2022.10.007] [Reference Citation Analysis]
5 Mandal P, Eswara K, Yerkesh Z, Kharchenko V, Zandarashvili L, Szczepski K, Bensaddek D, Jaremko Ł, Black BE, Fischle W. Molecular basis of hUHRF1 allosteric activation for synergistic histone modification binding by PI5P. Sci Adv 2022;8:eabl9461. [PMID: 36001657 DOI: 10.1126/sciadv.abl9461] [Reference Citation Analysis]
6 Di Paola L, Poudel H, Parise M, Giuliani A, Leitner DM. A Statistical Journey through the Topological Determinants of the β2 Adrenergic Receptor Dynamics. Entropy 2022;24:998. [DOI: 10.3390/e24070998] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Tastan Bishop Ö, Mutemi Musyoka T, Barozi V. Allostery and missense mutations as intermittently linked promising aspects of modern computational drug discovery. Journal of Molecular Biology 2022. [DOI: 10.1016/j.jmb.2022.167610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chen J, Vishweshwaraiah YL, Dokholyan NV. Design and engineering of allosteric communications in proteins. Curr Opin Struct Biol 2022;73:102334. [PMID: 35180676 DOI: 10.1016/j.sbi.2022.102334] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Chatzigoulas A, Cournia Z. Predicting protein–membrane interfaces of peripheral membrane proteins using ensemble machine learning. Briefings in Bioinformatics. [DOI: 10.1093/bib/bbab518] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
10 Thériault JF, Poirier D, Lin SX. The multi-specific human 17 beta-hydroxysteroid dehydrogenase type 7: Non-competitive inhibitors can target different catalyses to facilitate breast cancer treatment. J Steroid Biochem Mol Biol 2021;214:105963. [PMID: 34400276 DOI: 10.1016/j.jsbmb.2021.105963] [Reference Citation Analysis]
11 Chatzigoulas A, Cournia Z. Predicting protein-membrane interfaces of peripheral membrane proteins using ensemble machine learning.. [DOI: 10.1101/2021.06.28.450157] [Reference Citation Analysis]
12 Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIREs Comput Mol Sci 2021;11. [DOI: 10.1002/wcms.1529] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
13 Kojima K, Watanabe H. Improved methods for monitoring <i>Botrytis cinerea</i> sensitivity to fludioxonil and its prevalent sensitivity status in Gifu Prefecture, Japan. Ann Rept Kansai Pl Prot 2021;63:109-113. [DOI: 10.4165/kapps.63.109] [Reference Citation Analysis]
14 Pérez-Conesa S, Keeler EG, Zhang D, Delemotte L, McDermott AE. Informing NMR experiments with molecular dynamics simulations to characterize the dominant activated state of the KcsA ion channel. J Chem Phys 2021;154:165102. [PMID: 33940802 DOI: 10.1063/5.0040649] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Valentine ML, Waterland MK, Fathizadeh A, Elber R, Baiz CR. Interfacial Dynamics in Lipid Membranes: The Effects of Headgroup Structures. J Phys Chem B 2021;125:1343-50. [DOI: 10.1021/acs.jpcb.0c08755] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
16 Pérez-conesa S, Keeler EG, Zhang D, Delemotte L, Mcdermott AE. Informing NMR experiments with molecular dynamics simulations to characterize the dominant activated state of the KcsA ion channel.. [DOI: 10.1101/2020.12.14.422800] [Reference Citation Analysis]
17 Westerlund AM, Fleetwood O, Pérez-conesa S, Delemotte L. Network analysis reveals how lipids and other cofactors influence membrane protein allostery. J Chem Phys 2020;153:141103. [DOI: 10.1063/5.0020974] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
18 Westerlund AM, Fleetwood O, Perez-conesa S, Delemotte L. Network analysis reveals how lipids and other cofactors influence membrane protein allostery.. [DOI: 10.1101/2020.07.06.187484] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]