BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Heifetz A, James T, Southey M, Morao I, Aldeghi M, Sarrat L, Fedorov DG, Bodkin MJ, Townsend-Nicholson A. Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach. Curr Opin Struct Biol 2019;55:85-92. [PMID: 31022570 DOI: 10.1016/j.sbi.2019.03.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Veríssimo GC, Serafim MSM, Kronenberger T, Ferreira RS, Honorio KM, Maltarollo VG. Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opin Drug Discov 2022. [PMID: 35983695 DOI: 10.1080/17460441.2022.2114451] [Reference Citation Analysis]
2 Monteleone S, Fedorov DG, Townsend-Nicholson A, Southey M, Bodkin M, Heifetz A. Hotspot Identification and Drug Design of Protein-Protein Interaction Modulators Using the Fragment Molecular Orbital Method. J Chem Inf Model 2022. [PMID: 35939049 DOI: 10.1021/acs.jcim.2c00457] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Fukuzawa K, Tanaka S. Fragment molecular orbital calculations for biomolecules. Curr Opin Struct Biol 2021;72:127-34. [PMID: 34656048 DOI: 10.1016/j.sbi.2021.08.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
4 Zhu S, Wu M, Huang Z, An J. Trends in application of advancing computational approaches in GPCR ligand discovery. Exp Biol Med (Maywood) 2021;246:1011-24. [PMID: 33641446 DOI: 10.1177/1535370221993422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Nakliang P, Lazim R, Chang H, Choi S. Multiscale Molecular Modeling in G Protein-Coupled Receptor (GPCR)-Ligand Studies. Biomolecules 2020;10:E631. [PMID: 32325877 DOI: 10.3390/biom10040631] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
6 Heifetz A, Morao I, Babu MM, James T, Southey MWY, Fedorov DG, Aldeghi M, Bodkin MJ, Townsend-Nicholson A. Characterizing Interhelical Interactions of G-Protein Coupled Receptors with the Fragment Molecular Orbital Method. J Chem Theory Comput 2020;16:2814-24. [PMID: 32096994 DOI: 10.1021/acs.jctc.9b01136] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
7 Nakata H, Fedorov DG. Geometry Optimization, Transition State Search, and Reaction Path Mapping Accomplished with the Fragment Molecular Orbital Method. Methods Mol Biol 2020;2114:87-103. [PMID: 32016888 DOI: 10.1007/978-1-0716-0282-9_6] [Reference Citation Analysis]
8 Yoshida H, Sato K, Ishikawa T, Sakamoto T, Yamagishi K. Binding interaction analysis of RNA aptamer-Fc region of human immunoglobulin G using fragment molecular orbital calculation. Chemical Physics Letters 2020;738:136854. [DOI: 10.1016/j.cplett.2019.136854] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Fedorov DG. Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method. J Chem Theory Comput 2019;15:5404-16. [PMID: 31461277 DOI: 10.1021/acs.jctc.9b00715] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
10 Fedorov DG, Brekhov A, Mironov V, Alexeev Y. Molecular Electrostatic Potential and Electron Density of Large Systems in Solution Computed with the Fragment Molecular Orbital Method. J Phys Chem A 2019;123:6281-90. [DOI: 10.1021/acs.jpca.9b04936] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
11 Ranganathan S, Blundell TL. Editorial overview: Theory and simulation: demystifying GPCRs – structure, function and drug design. Current Opinion in Structural Biology 2019;55:vi-viii. [DOI: 10.1016/j.sbi.2019.07.004] [Reference Citation Analysis]