BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sdobnov AY, Darvin ME, Genina EA, Bashkatov AN, Lademann J, Tuchin VV. Recent progress in tissue optical clearing for spectroscopic application. Spectrochim Acta A Mol Biomol Spectrosc 2018;197:216-29. [PMID: 29433855 DOI: 10.1016/j.saa.2018.01.085] [Cited by in Crossref: 47] [Cited by in F6Publishing: 24] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 [DOI: 10.1117/12.2508166] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Sdobnov AY, Kalchenko VV, Bykov AV, Popov AP, Molodij G, Meglinski IV. Blood Flow Visualization by Means of Laser Speckle-Contrast Measurements under the Conditions of Nonergodicity. Opt Spectrosc 2020;128:778-86. [DOI: 10.1134/s0030400x2006020x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Rakotomanga P, Soussen C, Khairallah G, Amouroux M, Zaytsev S, Genina E, Chen H, Delconte A, Daul C, Tuchin V, Blondel W. Source separation approach for the analysis of spatially resolved multiply excited autofluorescence spectra during optical clearing of ex vivo skin. Biomed Opt Express 2019;10:3410-24. [PMID: 31467786 DOI: 10.1364/BOE.10.003410] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
4 Zhu J, Liu X, Deng Y, Li D, Yu T, Zhu D. Tissue optical clearing for 3D visualization of vascular networks: A review. Vascul Pharmacol 2021;:106905. [PMID: 34506969 DOI: 10.1016/j.vph.2021.106905] [Reference Citation Analysis]
5 Carneiro I, Carvalho S, Henrique R, Oliveira L, Tuchin V. Moving tissue spectral window to the deep‐ultraviolet via optical clearing. J Biophotonics 2019;12. [DOI: 10.1002/jbio.201900181] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
6 Matryba P, Łukasiewicz K, Pawłowska M, Tomczuk J, Gołąb J. Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging? Int J Mol Sci 2021;22:6730. [PMID: 34201632 DOI: 10.3390/ijms22136730] [Reference Citation Analysis]
7 Jaafar A, Mahmood MH, Holomb R, Himics L, Váczi T, Sdobnov AY, Tuchin VV, Veres M. Ex-vivo confocal Raman microspectroscopy of porcine skin with 633/785-NM laser excitation and optical clearing with glycerol/water/DMSO solution. J Innov Opt Health Sci 2021;14:2142003. [DOI: 10.1142/s1793545821420037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Lu W, Pei Z, Hu W, Tan C, Tong X, Feng Y, Sun X. Recent progress in optical clearing of eye tissues. Exp Eye Res 2021;212:108796. [PMID: 34662543 DOI: 10.1016/j.exer.2021.108796] [Reference Citation Analysis]
9 Lin Q, Lazareva EN, Kochubey VI, Duan Y, Tuchin VV. Kinetics of optical clearing of human skin studied in vivo using portable Raman spectroscopy. Laser Phys Lett 2020;17:105601. [DOI: 10.1088/1612-202x/abae6d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhu J, Li D, Yu T, Zhu D. Optical angiography for diabetes-induced pathological changes in microvascular structure and function: An overview. J Innov Opt Health Sci 2022;15:2230002. [DOI: 10.1142/s1793545822300026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G. Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant Imaging Med Surg 2020;10:1275-85. [PMID: 32550136 DOI: 10.21037/qims-19-1090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
12 Hough M, Fenlon M, Glazier A, Short C, Fernandez GE, Xu J, Mahdi E, Asahina K, Wang KS. Urea-based amino sugar agent clears murine liver and preserves protein fluorescence and lipophilic dyes. Biotechniques 2021;70:72-80. [PMID: 33467918 DOI: 10.2144/btn-2020-0063] [Reference Citation Analysis]
13 Martinelli LP, Iermak I, Moriyama LT, Requena MB, Pires L, Kurachi C. Optical clearing agent increases effectiveness of photodynamic therapy in a mouse model of cutaneous melanoma: an analysis by Raman microspectroscopy. Biomed Opt Express 2020;11:6516-27. [PMID: 33282505 DOI: 10.1364/BOE.405039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
14 Bu T, Shao C, Zhu Y, Huang T, Zhao Q, Sun Y, Wang Y, Ma H. Probing Dynamic Variation of Layered Microstructure Using Backscattering Polarization Imaging. Photonics 2022;9:153. [DOI: 10.3390/photonics9030153] [Reference Citation Analysis]
15 Lu L, Cao Y, He Q, Xu W, Zhang Y, Li L, Li R. A rapid and effective optical-clearing technique for deep tissue fluorescence imaging in trees. Trees 2020;34:783-90. [DOI: 10.1007/s00468-020-01957-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Baylon EG, Crowder HA, Gold GE, Levenston ME. Non-ionic CT contrast solutions rapidly alter bovine cartilage and meniscus mechanics. Osteoarthritis Cartilage 2020;28:1286-97. [PMID: 32535082 DOI: 10.1016/j.joca.2020.05.013] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022;180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Carneiro I, Carvalho S, Henrique R, Oliveira LM, Tuchin VV. A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J Biophotonics 2019;12:e201800333. [PMID: 30585430 DOI: 10.1002/jbio.201800333] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
19 Shirshin EA, Yakimov BP, Darvin ME, Omelyanenko NP, Rodionov SA, Gurfinkel YI, Lademann J, Fadeev VV, Priezzhev AV. Label-Free Multiphoton Microscopy: The Origin of Fluorophores and Capabilities for Analyzing Biochemical Processes. Biochemistry (Mosc) 2019;84:S69-88. [PMID: 31213196 DOI: 10.1134/S0006297919140050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Svenskaya YI, Genina EA, Parakhonskiy BV, Lengert EV, Talnikova EE, Terentyuk GS, Utz SR, Gorin DA, Tuchin VV, Sukhorukov GB. A Simple Non-Invasive Approach toward Efficient Transdermal Drug Delivery Based on Biodegradable Particulate System. ACS Appl Mater Interfaces 2019;11:17270-82. [PMID: 30977624 DOI: 10.1021/acsami.9b04305] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
21 Sdobnov AY, Darvin ME, Schleusener J, Lademann J, Tuchin VV. Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents-Quantitative analysis using confocal Raman microscopy. J Biophotonics 2019;12:e201800283. [PMID: 30565427 DOI: 10.1002/jbio.201800283] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
22 Kalchenko V, Meglinski I, Sdobnov A, Kuznetsov Y, Harmelin A. Combined laser speckle imaging and fluorescent intravital microscopy for monitoring acute vascular permeability reaction. J Biomed Opt 2019;24:1-4. [PMID: 31152505 DOI: 10.1117/1.JBO.24.6.060501] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
23 Zharkikh E, Dremin V, Zherebtsov E, Dunaev A, Meglinski I. Biophotonics methods for functional monitoring of complications of diabetes mellitus. J Biophotonics 2020;13. [DOI: 10.1002/jbio.202000203] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Jaafar A, Holomb R, Sdobnov AY, Ocskay Z, Jakus Z, Tuchin VV, Veres M. Ex vivo confocal Raman microspectroscopy of porcine dura mater supported by optical clearing. J Biophotonics 2021;:e202100332. [PMID: 34951739 DOI: 10.1002/jbio.202100332] [Reference Citation Analysis]
25 Berezin KV, Dvoretskii KN, Nechaev VV, Novoselova AV, Likhter AM, Shagautdinova IT, Grabarchuk EV, Tuchin VV. Optical Clearing of Biological Tissues with a Number of Disaccharides. Opt Spectrosc . [DOI: 10.1134/s0030400x21060035] [Reference Citation Analysis]
26 Morovati A, Ansari MA, Tuchin VV. In vivo detection of human cutaneous beta-carotene using computational optical clearing. J Biophotonics 2020;13:e202000124. [PMID: 32475030 DOI: 10.1002/jbio.202000124] [Reference Citation Analysis]
27 Zaytsev SM, Amouroux M, Khairallah G, Bashkatov AN, Tuchin VV, Blondel W, Genina EA. Impact of optical clearing on ex vivo human skin optical properties characterized by spatially resolved multimodal spectroscopy. J Biophotonics 2021;:e202100202. [PMID: 34476912 DOI: 10.1002/jbio.202100202] [Reference Citation Analysis]
28 Costantini I, Cicchi R, Silvestri L, Vanzi F, Pavone FS. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed Opt Express 2019;10:5251-67. [PMID: 31646045 DOI: 10.1364/BOE.10.005251] [Cited by in Crossref: 56] [Cited by in F6Publishing: 21] [Article Influence: 18.7] [Reference Citation Analysis]
29 Kalchenko V, Sdobnov A, Meglinski I, Kuznetsov Y, Molodij G, Harmelin A. A Robust Method for Adjustment of Laser Speckle Contrast Imaging during Transcranial Mouse Brain Visualization. Photonics 2019;6:80. [DOI: 10.3390/photonics6030080] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
30 Darvin ME, Schleusener J, Parenz F, Seidel O, Krafft C, Popp J, Lademann J. Confocal Raman microscopy combined with optical clearing for identification of inks in multicolored tattooed skin in vivo. Analyst 2018;143:4990-9. [PMID: 30225475 DOI: 10.1039/c8an01213j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
31 Genin VD, Genina EA, Tuchin VV, Bashkatov AN. Glycerol effects on optical, weight and geometrical properties of skin tissue. J Innov Opt Health Sci 2021;14:2142006. [DOI: 10.1142/s1793545821420062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Sdobnov AY, Lademann J, Darvin ME, Tuchin VV. Methods for Optical Skin Clearing in Molecular Optical Imaging in Dermatology. Biochemistry (Mosc) 2019;84:S144-58. [PMID: 31213200 DOI: 10.1134/S0006297919140098] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
33 Csuka EA, Ward SC, Ekelem C, Csuka DA, Ardigò M, Mesinkovska NA. Reflectance Confocal Microscopy, Optical Coherence Tomography, and Multiphoton Microscopy in Inflammatory Skin Disease Diagnosis. Lasers Surg Med 2021;53:776-97. [PMID: 33527483 DOI: 10.1002/lsm.23386] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Xie Q, Zeng N, Huang Y, Tuchin VV, Ma H. Study on the tissue clearing process using different agents by Mueller matrix microscope. Biomed Opt Express 2019;10:3269-80. [PMID: 31467778 DOI: 10.1364/BOE.10.003269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
35 Wei Z, Lin Q, Lazareva EN, Dyachenko(timoshina) PA, Yang J, Duan Y, Tuchin VV. Optical clearing of laser-induced tissue plasma. Laser Phys Lett 2021;18:085603. [DOI: 10.1088/1612-202x/ac0e40] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]