1 |
Shen T, Wang T. Metabolic Reprogramming in COVID-19. Int J Mol Sci 2021;22:11475. [PMID: 34768906 DOI: 10.3390/ijms222111475] [Reference Citation Analysis]
|
2 |
Feingold KR. The bidirectional link between HDL and COVID-19 infections. J Lipid Res 2021;62:100067. [PMID: 33741421 DOI: 10.1016/j.jlr.2021.100067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022;13:791267. [DOI: 10.3389/fimmu.2022.791267] [Reference Citation Analysis]
|
4 |
Almalki A, Gokaraju B, Acquaah Y, Turlapaty A. Regression Analysis for COVID-19 Infections and Deaths Based on Food Access and Health Issues. Healthcare 2022;10:324. [DOI: 10.3390/healthcare10020324] [Reference Citation Analysis]
|
5 |
Madeira MP, Freire EBL, Fernandes VO, Lima GEDCP, Melo IDP, Montenegro APDR, Freire JEDC, Moreira-Nunes CFA, Montenegro RC, Colares JKB, Montenegro Junior RM; Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO). SARS-COV-2 infection outcomes in patients with congenital generalized lipodystrophy. Diabetol Metab Syndr 2021;13:65. [PMID: 34130736 DOI: 10.1186/s13098-021-00680-1] [Reference Citation Analysis]
|
6 |
Wang G, Deng J, Li J, Wu C, Dong H, Wu S, Zhong Y. The Role of High-Density Lipoprotein in COVID-19. Front Pharmacol 2021;12:720283. [PMID: 34335279 DOI: 10.3389/fphar.2021.720283] [Reference Citation Analysis]
|
7 |
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021;221:107750. [PMID: 33275999 DOI: 10.1016/j.pharmthera.2020.107750] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
8 |
Wu X, Zhou S, Liu C, Huang T, Zheng Y, Zhang W, Qu Y, Fang B. Clinical predictive risk factors prolonged the duration of SARS-CoV-2 clearance in 279 moderate COVID-19 patients: A multicenter retrospective cohort study. Medicine (Baltimore) 2021;100:e27410. [PMID: 34622847 DOI: 10.1097/MD.0000000000027410] [Reference Citation Analysis]
|
9 |
Barman HA, Pala AS, Dogan O, Atıcı A, Yumuk MT, Alici G, Sit O, Gungor B, Dogan SM. Prognostic significance of temporal changes of lipid profile in COVID-19 patients. Obes Med 2021;28:100373. [PMID: 34671707 DOI: 10.1016/j.obmed.2021.100373] [Reference Citation Analysis]
|
10 |
Xu H, Xie C, Li P, Ji Z, Sun J, Hu B, Li X, Fang M. Demographic, Virological Characteristics and Prognosis of Asymptomatic COVID-19 Patients in South China. Front Med 2022;9:830942. [DOI: 10.3389/fmed.2022.830942] [Reference Citation Analysis]
|
11 |
Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Good Cholesterol Gone Bad? HDL and COVID-19. Int J Mol Sci 2021;22:10182. [PMID: 34638523 DOI: 10.3390/ijms221910182] [Reference Citation Analysis]
|
12 |
Peng F, Lei S, Zhang Q, Zhong Y, Wu S. Triglyceride/High-Density Lipoprotein Cholesterol Ratio is Associated with the Mortality of COVID-19: A Retrospective Study in China. IJGM 2022;Volume 15:985-96. [DOI: 10.2147/ijgm.s346690] [Reference Citation Analysis]
|
13 |
Cho KH. Importance of Apolipoprotein A-I and A-II Composition in HDL and Its Potential for Studying COVID-19 and SARS-CoV-2. Medicines (Basel) 2021;8:38. [PMID: 34357154 DOI: 10.3390/medicines8070038] [Reference Citation Analysis]
|
14 |
Cho KH, Kim JR, Lee IC, Kwon HJ. Native High-Density Lipoproteins (HDL) with Higher Paraoxonase Exerts a Potent Antiviral Effect against SARS-CoV-2 (COVID-19), While Glycated HDL Lost the Antiviral Activity. Antioxidants (Basel) 2021;10:209. [PMID: 33535459 DOI: 10.3390/antiox10020209] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
|