BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kuwaki T, Zhang W. Orexin neurons as arousal-associated modulators of central cardiorespiratory regulation. Respiratory Physiology & Neurobiology 2010;174:43-54. [DOI: 10.1016/j.resp.2010.04.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
Number Citing Articles
1 Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin) 2015;2:379-91. [PMID: 27227052 DOI: 10.1080/23328940.2015.1066921] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
2 Stettner GM, Kubin L. Antagonism of orexin receptors in the posterior hypothalamus reduces hypoglossal and cardiorespiratory excitation from the perifornical hypothalamus. J Appl Physiol (1985) 2013;114:119-30. [PMID: 23104701 DOI: 10.1152/japplphysiol.00965.2012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
3 Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 345-63. [DOI: 10.1002/cphy.c190013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Lamotte G, Shouman K, Benarroch EE. Stress and central autonomic network. Auton Neurosci 2021;235:102870. [PMID: 34461325 DOI: 10.1016/j.autneu.2021.102870] [Reference Citation Analysis]
5 Dampney RA. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ 2016;40:283-96. [PMID: 27445275 DOI: 10.1152/advan.00027.2016] [Cited by in Crossref: 96] [Cited by in F6Publishing: 79] [Article Influence: 19.2] [Reference Citation Analysis]
6 Yamanaka R, Yunoki T, Arimitsu T, Lian CS, Roghayyeh A, Matsuura R, Yano T. Relationship between effort sense and ventilatory response to intense exercise performed with reduced muscle glycogen. Eur J Appl Physiol 2012;112:2149-62. [PMID: 21964911 DOI: 10.1007/s00421-011-2190-y] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
7 Kuwaki T. Orexin (hypocretin) participates in central autonomic regulation during fight-or-flight response. Peptides 2021;139:170530. [PMID: 33741478 DOI: 10.1016/j.peptides.2021.170530] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Casagrande M, Favieri F, Langher V, Guarino A, Di Pace E, Germanò G, Forte G. The Night Side of Blood Pressure: Nocturnal Blood Pressure Dipping and Emotional (dys)Regulation. Int J Environ Res Public Health 2020;17:E8892. [PMID: 33265925 DOI: 10.3390/ijerph17238892] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Shahid IZ, Rahman AA, Pilowsky PM. Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex. Br J Pharmacol 2012;165:2292-303. [PMID: 21951179 DOI: 10.1111/j.1476-5381.2011.01694.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 6.1] [Reference Citation Analysis]
10 Morairty SR, Revel FG, Malherbe P, Moreau JL, Valladao D, Wettstein JG, Kilduff TS, Borroni E. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS One 2012;7:e39131. [PMID: 22768296 DOI: 10.1371/journal.pone.0039131] [Cited by in Crossref: 79] [Cited by in F6Publishing: 89] [Article Influence: 7.9] [Reference Citation Analysis]
11 Sobczak F, Pais-Roldán P, Takahashi K, Yu X. Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation. Elife 2021;10:e68980. [PMID: 34463612 DOI: 10.7554/eLife.68980] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Yamaguchi K, Futatsuki T, Ushikai J, Kuroki C, Minami T, Kakihana Y, Kuwaki T. Intermittent but not sustained hypoxia activates orexin-containing neurons in mice. Respir Physiol Neurobiol 2015;206:11-4. [PMID: 25462014 DOI: 10.1016/j.resp.2014.11.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
13 Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 2014;17:1298-303. [PMID: 25254979 DOI: 10.1038/nn.3810] [Cited by in Crossref: 223] [Cited by in F6Publishing: 207] [Article Influence: 27.9] [Reference Citation Analysis]
14 Kuroki C, Takahashi Y, Ootsuka Y, Kanmura Y, Kuwaki T. The Impact of Hypothermia on Emergence from Isoflurane Anesthesia in Orexin Neuron-Ablated Mice. Anesthesia & Analgesia 2013;116:1001-5. [DOI: 10.1213/ane.0b013e31828842f0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
15 Dampney RAL. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2015;309:R429-43. [DOI: 10.1152/ajpregu.00051.2015] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 10.0] [Reference Citation Analysis]
16 Fanfulla F, Ceriana P, D'Artavilla Lupo N, Trentin R, Frigerio F, Nava S. Sleep disturbances in patients admitted to a step-down unit after ICU discharge: the role of mechanical ventilation. Sleep 2011;34:355-62. [PMID: 21358853 DOI: 10.1093/sleep/34.3.355] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
17 Shin YO, Lee JB, Min YK, Yang HM. Heat acclimation affects circulating levels of prostaglandin E2, COX-2 and orexin in humans. Neurosci Lett 2013;542:17-20. [PMID: 23523649 DOI: 10.1016/j.neulet.2013.03.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
18 Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab 2014;3:372-83. [PMID: 24944897 DOI: 10.1016/j.molmet.2014.03.002] [Cited by in Crossref: 156] [Cited by in F6Publishing: 133] [Article Influence: 19.5] [Reference Citation Analysis]
19 Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension 2020;76:300-11. [PMID: 32594802 DOI: 10.1161/HYPERTENSIONAHA.120.14521] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
20 Silvani A, Dampney RA. Central control of cardiovascular function during sleep. Am J Physiol Heart Circ Physiol 2013;305:H1683-92. [PMID: 24097430 DOI: 10.1152/ajpheart.00554.2013] [Cited by in Crossref: 64] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
21 Aran A, Shors I, Lin L, Mignot E, Schimmel MS. CSF levels of hypocretin-1 (orexin-A) peak during early infancy in humans. Sleep 2012;35:187-91. [PMID: 22294808 DOI: 10.5665/sleep.1618] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
22 Olsen N, Furlong TM, Carrive P. Behavioural and cardiovascular effects of orexin-A infused into the central amygdala under basal and fear conditions in rats. Behav Brain Res 2021;415:113515. [PMID: 34371088 DOI: 10.1016/j.bbr.2021.113515] [Reference Citation Analysis]
23 Guyenet PG, Abbott SB. Chemoreception and asphyxia-induced arousal. Respir Physiol Neurobiol 2013;188:333-43. [PMID: 23608705 DOI: 10.1016/j.resp.2013.04.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
24 Xiao F, Jiang M, Du D, Xia C, Wang J, Cao Y, Shen L, Zhu D. Orexin A regulates cardiovascular responses in stress-induced hypertensive rats. Neuropharmacology 2013;67:16-24. [PMID: 23147417 DOI: 10.1016/j.neuropharm.2012.10.021] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 5.5] [Reference Citation Analysis]
25 Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol 2014;4:1511-62. [PMID: 25428853 DOI: 10.1002/cphy.c140004] [Cited by in Crossref: 153] [Cited by in F6Publishing: 139] [Article Influence: 21.9] [Reference Citation Analysis]
26 Bochorishvili G, Nguyen T, Coates MB, Viar KE, Stornetta RL, Guyenet PG. The orexinergic neurons receive synaptic input from C1 cells in rats. J Comp Neurol 2014;522:3834-46. [PMID: 24984694 DOI: 10.1002/cne.23643] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
27 Burke PG, Abbott SB, Coates MB, Viar KE, Stornetta RL, Guyenet PG. Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats. Am J Respir Crit Care Med 2014;190:1301-10. [PMID: 25325789 DOI: 10.1164/rccm.201407-1262OC] [Cited by in Crossref: 53] [Cited by in F6Publishing: 33] [Article Influence: 7.6] [Reference Citation Analysis]
28 Kanbar R, Stornetta RL, Guyenet PG. Sciatic nerve stimulation activates the retrotrapezoid nucleus in anesthetized rats. J Neurophysiol 2016;116:2081-92. [PMID: 27512023 DOI: 10.1152/jn.00543.2016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
29 Kuwaki T, Zhang W. Orexin neurons and emotional stress. Vitam Horm 2012;89:135-58. [PMID: 22640612 DOI: 10.1016/B978-0-12-394623-2.00008-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
30 Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology 2018;91:958-66. [PMID: 30355703 DOI: 10.1212/WNL.0000000000006537] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
31 Benarroch EE. Control of the cardiovascular and respiratory systems during sleep. Autonomic Neuroscience 2019;218:54-63. [DOI: 10.1016/j.autneu.2019.01.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]