BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kuwaki T, Li A, Nattie E. State-dependent central chemoreception: a role of orexin. Respir Physiol Neurobiol 2010;173:223-9. [PMID: 20170755 DOI: 10.1016/j.resp.2010.02.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Han F. Narcolepsy, orexins and respiratory regulation: Respiratory regulation in narcolepsy. Sleep and Biological Rhythms 2011;9:44-51. [DOI: 10.1111/j.1479-8425.2010.00467.x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
2 Umezawa N, Arisaka H, Sakuraba S, Sugita T, Matsumoto A, Kaku Y, Yoshida K, Kuwana S. Orexin-B antagonized respiratory depression induced by sevoflurane, propofol, and remifentanil in isolated brainstem-spinal cords of neonatal rats. Respiratory Physiology & Neurobiology 2015;205:61-5. [DOI: 10.1016/j.resp.2014.10.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
3 Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 345-63. [DOI: 10.1002/cphy.c190013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Morairty SR, Revel FG, Malherbe P, Moreau JL, Valladao D, Wettstein JG, Kilduff TS, Borroni E. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS One 2012;7:e39131. [PMID: 22768296 DOI: 10.1371/journal.pone.0039131] [Cited by in Crossref: 79] [Cited by in F6Publishing: 89] [Article Influence: 7.9] [Reference Citation Analysis]
5 Han F. Sleepiness that cannot be overcome: Narcolepsy and cataplexy: Narcolepsy-cataplexy syndrome. Respirology 2012;17:1157-65. [DOI: 10.1111/j.1440-1843.2012.02178.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
6 Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 2013;121:117-24. [PMID: 23562864 DOI: 10.1016/j.physbeh.2013.03.023] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 7.7] [Reference Citation Analysis]
7 Cataldi M, Arnaldi D, Tucci V, De Carli F, Patti G, Napoli F, Pace M, Maghnie M, Nobili L. Sleep disorders in Prader-Willi syndrome, evidence from animal models and humans. Sleep Med Rev 2021;57:101432. [PMID: 33567377 DOI: 10.1016/j.smrv.2021.101432] [Reference Citation Analysis]
8 Sugita T, Sakuraba S, Kaku Y, Yoshida K, Arisaka H, Kuwana S. Orexin induces excitation of respiratory neuronal network in isolated brainstem spinal cord of neonatal rat. Respir Physiol Neurobiol 2014;200:105-9. [PMID: 24953675 DOI: 10.1016/j.resp.2014.06.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
9 Rodrigues LTC, Salata B, Horta-Júnior JAC, Gargaglioni LH, Dias MB. Adenosine in the lateral hypothalamus/perifornical area does not participate on the CO2 chemoreflex. Respir Physiol Neurobiol 2020;276:103368. [PMID: 32061712 DOI: 10.1016/j.resp.2020.103368] [Reference Citation Analysis]
10 Ramirez JM, Doi A, Garcia AJ 3rd, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2012;2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Cited by in Crossref: 15] [Cited by in F6Publishing: 31] [Article Influence: 1.7] [Reference Citation Analysis]
11 Song N, Zhang G, Geng W, Liu Z, Jin W, Li L, Cao Y, Zhu D, Yu J, Shen L. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control. PLoS One 2012;7:e39982. [PMID: 22792205 DOI: 10.1371/journal.pone.0039982] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
12 Leirão IP, Silva CA Jr, Gargaglioni LH, da Silva GSF. Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats. J Physiol 2018;596:3271-83. [PMID: 28776683 DOI: 10.1113/JP274726] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 3.2] [Reference Citation Analysis]
13 da Silva EN, Horta-Júnior JAC, Gargaglioni LH, Dias MB. ATP in the lateral hypothalamus/perifornical area enhances the CO2 chemoreflex control of breathing. Exp Physiol 2018;103:1679-91. [PMID: 30242927 DOI: 10.1113/EP087182] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
14 Eugenín León J, Olivares MJ, Beltrán-Castillo S. Role of Astrocytes in Central Respiratory Chemoreception. Adv Exp Med Biol 2016;949:109-45. [PMID: 27714687 DOI: 10.1007/978-3-319-40764-7_6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
15 Nattie E, Li A. Central chemoreceptors: locations and functions. Compr Physiol 2012;2:221-54. [PMID: 23728974 DOI: 10.1002/cphy.c100083] [Cited by in Crossref: 36] [Cited by in F6Publishing: 72] [Article Influence: 4.0] [Reference Citation Analysis]
16 Lindsey BG, Rybak IA, Smith JC. Computational models and emergent properties of respiratory neural networks. Compr Physiol 2012;2:1619-70. [PMID: 23687564 DOI: 10.1002/cphy.c110016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 33] [Article Influence: 1.6] [Reference Citation Analysis]
17 Huckstepp RT, Dale N. Redefining the components of central CO2 chemosensitivity--towards a better understanding of mechanism. J Physiol. 2011;589:5561-5579. [PMID: 22005672 DOI: 10.1113/jphysiol.2011.214759] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 4.3] [Reference Citation Analysis]
18 Nattie E. Julius H. Comroe, Jr., distinguished lecture: central chemoreception: then ... and now. J Appl Physiol (1985) 2011;110:1-8. [PMID: 21071595 DOI: 10.1152/japplphysiol.01061.2010] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 4.3] [Reference Citation Analysis]
19 Nattie E, Li A. Central chemoreceptors: locations and functions. Compr Physiol 2012;2:221-54. [PMID: 23728974 DOI: 10.1002/cphy.c100083] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Pisanski A, Ding X, Koch NA, Pagliardini S. Chemogenetic modulation of the parafacial respiratory group influences the recruitment of abdominal activity during REM sleep. Sleep 2020;43:zsz283. [PMID: 31747042 DOI: 10.1093/sleep/zsz283] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 157-96. [DOI: 10.1007/7854_2016_46] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
22 Nattie E, Li A. Respiration and autonomic regulation and orexin. Prog Brain Res 2012;198:25-46. [PMID: 22813968 DOI: 10.1016/B978-0-444-59489-1.00004-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
23 Ghali MGZ. Retracted: Rubral modulation of breathing. Exp Physiol 2019;104:1595-604. [DOI: 10.1113/ep087720] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
24 Han F. Respiratory regulation in narcolepsy. Sleep Breath 2012;16:241-5. [PMID: 21318258 DOI: 10.1007/s11325-011-0489-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
25 Taxini CL, Puga CCI, Dias MB, Bícego KC, Gargaglioni LH. Ionotropic but not metabotropic glutamatergic receptors in the locus coeruleus modulate the hypercapnic ventilatory response in unanaesthetized rats. Acta Physiol 2013;208:125-35. [DOI: 10.1111/apha.12082] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
26 Song N, Zhang G, Geng W, Liu Z, Jin W, Li L, Cao Y, Zhu D, Yu J, Shen L. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control. PLoS One 2012;7:e39982. [PMID: 22792205 DOI: 10.1371/journal.pone.0039982] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Buchanan GF. Timing, sleep, and respiration in health and disease. Prog Mol Biol Transl Sci 2013;119:191-219. [PMID: 23899599 DOI: 10.1016/B978-0-12-396971-2.00008-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
28 Ghali MGZ. Role of the medullary lateral tegmental field in sympathetic control. JIN 2018;16:189-208. [DOI: 10.3233/jin-170010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
29 Li A, Roy SH, Nattie EE. An augmented CO2 chemoreflex and overactive orexin system are linked with hypertension in young and adult spontaneously hypertensive rats. J Physiol 2016;594:4967-80. [PMID: 27061304 DOI: 10.1113/JP272199] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
30 Kuwaki T, Zhang W. Orexin neurons and emotional stress. Vitam Horm 2012;89:135-58. [PMID: 22640612 DOI: 10.1016/B978-0-12-394623-2.00008-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
31 Pagliardini S, Greer JJ, Funk GD, Dickson CT. State-dependent modulation of breathing in urethane-anesthetized rats. J Neurosci 2012;32:11259-70. [PMID: 22895710 DOI: 10.1523/JNEUROSCI.0948-12.2012] [Cited by in Crossref: 50] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
32 Rodrigues LTC, da Silva EN, Horta-Júnior JAC, Gargaglioni LH, Dias MB. Glutamate metabotropic receptors in the lateral hypothalamus/perifornical area reduce the CO2 chemoreflex. Respir Physiol Neurobiol 2019;260:122-30. [PMID: 30471436 DOI: 10.1016/j.resp.2018.11.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Korostovtseva L, Bochkarev M, Sviryaev Y. Sleep and Cardiovascular Risk. Sleep Med Clin 2021;16:485-97. [PMID: 34325825 DOI: 10.1016/j.jsmc.2021.05.001] [Reference Citation Analysis]
34 Faull OK, Subramanian HH, Ezra M, Pattinson KTS. The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing. Neurosci Biobehav Rev 2019;98:135-44. [PMID: 30611797 DOI: 10.1016/j.neubiorev.2018.12.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
35 Stettner GM, Kubin L. Antagonism of orexin receptors in the posterior hypothalamus reduces hypoglossal and cardiorespiratory excitation from the perifornical hypothalamus. J Appl Physiol (1985) 2013;114:119-30. [PMID: 23104701 DOI: 10.1152/japplphysiol.00965.2012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
36 Leirão IP, Zoccal DB, Gargaglioni LH, da Silva GSF. Differential modulation of active expiration during hypercapnia by the medullary raphe in unanesthetized rats. Pflugers Arch 2020;472:1563-76. [PMID: 32914212 DOI: 10.1007/s00424-020-02455-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Steiner MA, Lecourt H, Jenck F. The brain orexin system and almorexant in fear-conditioned startle reactions in the rat. Psychopharmacology (Berl) 2012;223:465-75. [PMID: 22592903 DOI: 10.1007/s00213-012-2736-7] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 5.1] [Reference Citation Analysis]