BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang M, Chen Y, Li C, Peng Q, Fang M, Liu W, Kang Q, Lin Y, Yung KK, Mo Z. Inhibiting effects of rhynchophylline on zebrafish methamphetamine dependence are associated with amelioration of neurotransmitters content and down-regulation of TH and NR2B expression. Prog Neuropsychopharmacol Biol Psychiatry 2016;68:31-43. [PMID: 27009763 DOI: 10.1016/j.pnpbp.2016.03.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu Y, Wang A, Fu L, Liu M, Li K, Chian S, Yao W, Wang B, Wang J. Fentanyl Induces Novel Conditioned Place Preference in Adult Zebrafish, Disrupts Neurotransmitter Homeostasis, and Triggers Behavioral Changes. IJERPH 2022;19:13533. [DOI: 10.3390/ijerph192013533] [Reference Citation Analysis]
2 Bedrossiantz J, Bellot M, Dominguez-García P, Faria M, Prats E, Gómez-Canela C, López-Arnau R, Escubedo E, Raldúa D. A Zebrafish Model of Neurotoxicity by Binge-Like Methamphetamine Exposure. Front Pharmacol 2021;12:770319. [PMID: 34880760 DOI: 10.3389/fphar.2021.770319] [Reference Citation Analysis]
3 Zhang J, Nguyen AH, Schmiess-heine L, Le T, Xia X, Lau MP, Lee J, Cao H. Cardiotoxic effects of methamphetamine associated with electrophysiological and epigenetic aberrations in zebrafish.. [DOI: 10.1101/2021.09.16.460189] [Reference Citation Analysis]
4 Zhou Y, Xiao S, Li C, Chen Z, Zhu C, Zhou Q, Ou J, Li J, Chen Y, Luo C, Mo Z. Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1. Evid Based Complement Alternat Med 2021;2021:2136076. [PMID: 34484386 DOI: 10.1155/2021/2136076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Wang Z, Han S, Xu Z, Du P, Li X. Assessment on the adverse effects on different kinds of fish induced by methamphetamine during the natural attenuation process based on adverse outcome pathway. Sci Total Environ 2021;780:146587. [PMID: 33773348 DOI: 10.1016/j.scitotenv.2021.146587] [Reference Citation Analysis]
6 Wang Z, Dai S, Wang J, Du W, Zhu L. Assessment on chronic and transgenerational toxicity of methamphetamine to Caenorhabditis elegans and associated aquatic risk through toxicity indicator sensitivity distribution (TISD) analysis. Environ Pollut 2021;288:117696. [PMID: 34243081 DOI: 10.1016/j.envpol.2021.117696] [Reference Citation Analysis]
7 Ballester Roig MN, Leduc T, Areal CC, Mongrain V. Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021;3:312-41. [PMID: 34207633 DOI: 10.3390/clockssleep3020020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Yates JR, Campbell HL, Hawley LL, Horchar MJ, Kappesser JL, Wright MR. Effects of the GluN2B-selective antagonist Ro 63-1908 on acquisition and expression of methamphetamine conditioned place preference in male and female rats. Drug Alcohol Depend 2021;225:108785. [PMID: 34052688 DOI: 10.1016/j.drugalcdep.2021.108785] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Yang W, Ip SP, Liu L, Xian YF, Lin ZX. Uncaria rhynchophylla and its Major Constituents on Central Nervous System: A Review on Their Pharmacological Actions. Curr Vasc Pharmacol 2020;18:346-57. [PMID: 31272356 DOI: 10.2174/1570161117666190704092841] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
10 Qin N, Lu X, Liu Y, Qiao Y, Qu W, Feng F, Sun H. Recent research progress of Uncaria spp. based on alkaloids: phytochemistry, pharmacology and structural chemistry. Eur J Med Chem 2021;210:112960. [PMID: 33148492 DOI: 10.1016/j.ejmech.2020.112960] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
11 Wang Z, Mao K, Du W, Cai M, Zhang Z, Li X. Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish. Water Research 2020;184:116164. [DOI: 10.1016/j.watres.2020.116164] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
12 Tackie-Yarboi E, Wisner A, Horton A, Chau TQT, Reigle J, Funk AJ, McCullumsmith RE, Hall FS, Williams FE, Schiefer IT. Combining Neurobehavioral Analysis and In Vivo Photoaffinity Labeling to Understand Protein Targets of Methamphetamine in Casper Zebrafish. ACS Chem Neurosci 2020;11:2761-73. [PMID: 32786314 DOI: 10.1021/acschemneuro.0c00416] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Huang Y, Ma S, Wang Y, Yan R, Wang S, Liu N, Chen B, Chen J, Liu L. The Role of Traditional Chinese Herbal Medicines and Bioactive Ingredients on Ion Channels: A Brief Review and Prospect. CNS Neurol Disord Drug Targets 2019;18:257-65. [PMID: 30370864 DOI: 10.2174/1871527317666181026165400] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
14 Sancho Santos ME, Grabicová K, Steinbach C, Schmidt-Posthaus H, Šálková E, Kolářová J, Vojs Staňová A, Grabic R, Randák T. Environmental concentration of methamphetamine induces pathological changes in brown trout (Salmo trutta fario). Chemosphere 2020;254:126882. [PMID: 32957289 DOI: 10.1016/j.chemosphere.2020.126882] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang Z, Xu Z, Li X. Impacts of methamphetamine and ketamine on C.elegans’s physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters. Journal of Hazardous Materials 2019;363:268-76. [DOI: 10.1016/j.jhazmat.2018.09.020] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
16 Li C, Tu G, Luo C, Guo Y, Fang M, Zhu C, Li H, Ou J, Zhou Y, Liu W, Yung KKL, Mo Z. Effects of rhynchophylline on the hippocampal miRNA expression profile in ketamine-addicted rats. Prog Neuropsychopharmacol Biol Psychiatry 2018;86:379-89. [PMID: 29476799 DOI: 10.1016/j.pnpbp.2018.02.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
17 Guo Y, Luo C, Tu G, Li C, Liu Y, Liu W, Lam Yung KK, Mo Z. Rhynchophylline Downregulates Phosphorylated cAMP Response Element Binding Protein, Nuclear Receptor-related-1, and Brain-derived Neurotrophic Factor Expression in the Hippocampus of Ketamine-induced Conditioned Place Preference Rats. Pharmacogn Mag 2018;14:81-6. [PMID: 29576706 DOI: 10.4103/pm.pm_90_17] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
18 Li HC, Lin YB, Li C, Luo CH, Zhou YT, Ou JY, Li J, Mo ZX. Expression of miRNAs in Serum Exosomes versus Hippocampus in Methamphetamine-Induced Rats and Intervention of Rhynchophylline. Evid Based Complement Alternat Med 2018;2018:8025062. [PMID: 29636786 DOI: 10.1155/2018/8025062] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
19 Fang M, Li J, Zhu D, Luo C, Li C, Zhu C, Fan M, Yung KK, Mo Z. Effect of Sinomenine on the Morphine-Dependence and Related Neural Mechanisms in Mice. Neurochem Res 2017;42:3587-96. [PMID: 29116553 DOI: 10.1007/s11064-017-2407-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
20 Zhu C, Liu W, Luo C, Liu Y, Li C, Fang M, Lin Y, Ou J, Chen M, Zhu D, Yung KK, Mo Z. Inhibiting effects of rhynchophylline on methamphetamine-dependent zebrafish are related with the expression of tyrosine hydroxylase (TH). Fitoterapia 2017;117:47-51. [PMID: 28063836 DOI: 10.1016/j.fitote.2017.01.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]