BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016;65:321-9. [PMID: 25689818 DOI: 10.1016/j.pnpbp.2015.02.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Genders SG, Scheller KJ, Jaehne EJ, Turner BJ, Lawrence AJ, Brunner SM, Kofler B, van den Buuse M, Djouma E. GAL3 receptor knockout mice exhibit an alcohol-preferring phenotype: GAL 3 -KO mice and alcohol. Addiction Biology 2019;24:886-97. [DOI: 10.1111/adb.12641] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
2 Mittal N, Fleming SM, Martinez A, Thakore N, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Sex differences in cognitive performance and alcohol consumption in High Alcohol-Drinking (HAD-1) rats. Behav Brain Res 2020;381:112456. [PMID: 31891743 DOI: 10.1016/j.bbr.2019.112456] [Reference Citation Analysis]
3 Giardino WJ, Rodriguez ED, Smith ML, Ford MM, Galili D, Mitchell SH, Chen A, Ryabinin AE. Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger-Westphal nucleus urocortin-1 neuropeptide system. Transl Psychiatry 2017;7:e1021. [PMID: 28140406 DOI: 10.1038/tp.2016.293] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
4 Budzyński J, Ziółkowski M, Kłopocka M, Czarnecki D. Oxidoreductive homeostasis in alcohol-dependent male patients and the risk of alcohol drinking relapse in a 6-month follow-up. Alcohol 2016;50:57-64. [DOI: 10.1016/j.alcohol.2015.10.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
5 Flores-Bastías O, Adriasola-Carrasco A, Karahanian E. Activation of Melanocortin-4 Receptor Inhibits Both Neuroinflammation Induced by Early Exposure to Ethanol and Subsequent Voluntary Alcohol Intake in Adulthood in Animal Models: Is BDNF the Key Mediator? Front Cell Neurosci 2020;14:5. [PMID: 32063838 DOI: 10.3389/fncel.2020.00005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
6 Budzyński J, Ziółkowski M, Kłopocka M, Czarnecki D. Blood glucose and lipid concentrations after overload are not associated with the risk of alcohol relapse. Drug and Alcohol Dependence 2016;161:356-62. [DOI: 10.1016/j.drugalcdep.2016.02.029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
7 Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019;13:88. [PMID: 30814925 DOI: 10.3389/fnins.2019.00088] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
8 Flores-Bastías O, Gómez GI, Orellana JA, Karahanian E. Activation of Melanocortin-4 Receptor by a Synthetic Agonist Inhibits Ethanolinduced Neuroinflammation in Rats. Curr Pharm Des 2019;25:4799-805. [PMID: 31840601 DOI: 10.2174/1381612825666191216145153] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016;3:11. [PMID: 27148536 DOI: 10.3389/fnut.2016.00011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
10 Lerma-Cabrera JM, Carvajal F, Lopez-Legarrea P. Food addiction as a new piece of the obesity framework. Nutr J 2016;15:5. [PMID: 26758504 DOI: 10.1186/s12937-016-0124-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
11 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
12 Blanco-Gandía MC, Ledesma JC, Aracil-Fernández A, Navarrete F, Montagud-Romero S, Aguilar MA, Manzanares J, Miñarro J, Rodríguez-Arias M. The rewarding effects of ethanol are modulated by binge eating of a high-fat diet during adolescence. Neuropharmacology 2017;121:219-30. [PMID: 28457972 DOI: 10.1016/j.neuropharm.2017.04.040] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
13 Zhao Y, Constable RT, Hien D, Chung T, Potenza MN. Brain anatomical covariation patterns linked to binge drinking and age at first full drink. Neuroimage Clin 2021;29:102529. [PMID: 33321271 DOI: 10.1016/j.nicl.2020.102529] [Reference Citation Analysis]
14 Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking. Front Neurosci 2016;10:400. [PMID: 27625592 DOI: 10.3389/fnins.2016.00400] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
15 González-Portilla M, Montagud-Romero S, Navarrete F, Gasparyan A, Manzanares J, Miñarro J, Rodríguez-Arias M. Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. Int J Mol Sci 2021;22:5279. [PMID: 34067897 DOI: 10.3390/ijms22105279] [Reference Citation Analysis]
16 Barson JR. The role of neuropeptides in drug and ethanol abuse: Medication targets for drug and alcohol use disorders. Brain Research 2020;1740:146876. [DOI: 10.1016/j.brainres.2020.146876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Walker LC, Ch’ng SS, Lawrence AJ. Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. Curr Pharmacol Rep 2016;2:241-52. [DOI: 10.1007/s40495-016-0069-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
18 Lee JE. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides. Genomics Inform 2016;14:12-9. [PMID: 27103886 DOI: 10.5808/GI.2016.14.1.12] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
19 Jamali S, Zarrabian S, Haghparast A. Similar role of mPFC orexin-1 receptors in the acquisition and expression of morphine- and food-induced conditioned place preference in male rats. Neuropharmacology 2021;198:108764. [PMID: 34450116 DOI: 10.1016/j.neuropharm.2021.108764] [Reference Citation Analysis]
20 Hopf FW. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020;168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
21 Wang D, Zhang J, Bai Y, Zheng X, Alizamini MM, Shang W, Yang Q, Li M, Li Y, Sui N. Melanin-concentrating hormone in rat nucleus accumbens or lateral hypothalamus differentially impacts morphine and food seeking behaviors. J Psychopharmacol 2020;34:478-89. [PMID: 31909693 DOI: 10.1177/0269881119895521] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Walker LC, Lawrence AJ. The Role of Orexins/Hypocretins in Alcohol Use and Abuse. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 221-46. [DOI: 10.1007/7854_2016_55] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
23 Onaolapo A, Onaolapo O. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? Pathophysiology 2018;25:263-76. [DOI: 10.1016/j.pathophys.2018.04.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
24 Sirohi S, Van Cleef A, Davis JF. Intermittent access to a nutritionally complete high-fat diet attenuates alcohol drinking in rats. Pharmacol Biochem Behav 2017;153:105-15. [PMID: 27998722 DOI: 10.1016/j.pbb.2016.12.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
25 Morales-Mulia S, Magdaleno-Madrigal VM, Nicolini H, Genis-Mendoza A, Morales-Mulia M. Orexin-A up-regulates dopamine D2 receptor and mRNA in the nucleus accumbens Shell. Mol Biol Rep 2020;47:9689-97. [PMID: 33170427 DOI: 10.1007/s11033-020-05979-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Lei K, Wegner SA, Yu JH, Hopf FW. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 2016;110:431-7. [PMID: 27523303 DOI: 10.1016/j.neuropharm.2016.08.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
27 Vazey EM, den Hartog CR, Moorman DE. Central Noradrenergic Interactions with Alcohol and Regulation of Alcohol-Related Behaviors. Handb Exp Pharmacol 2018;248:239-60. [PMID: 29687164 DOI: 10.1007/164_2018_108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
28 Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020;14:599710. [PMID: 33240054 DOI: 10.3389/fnint.2020.599710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Ziółkowski M, Czarnecki D, Budzyński J, Rosińska Z, Żekanowska E, Góralczyk B. Orexin in Patients with Alcohol Dependence Treated for Relapse Prevention: A Pilot Study. Alcohol Alcohol 2016;51:416-21. [PMID: 26597795 DOI: 10.1093/alcalc/agv129] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
30 Ma T, Matsuoka S, Drummond-Barbosa D. RNAi-based screens uncover a potential new role for the orphan neuropeptide receptor Moody in Drosophila female germline stem cell maintenance. PLoS One 2020;15:e0243756. [PMID: 33307547 DOI: 10.1371/journal.pone.0243756] [Reference Citation Analysis]
31 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
32 Orellana JA, Cerpa W, Carvajal MF, Lerma-Cabrera JM, Karahanian E, Osorio-Fuentealba C, Quintanilla RA. New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Front Cell Neurosci 2017;11:90. [PMID: 28424592 DOI: 10.3389/fncel.2017.00090] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
33 Wakabayashi KT, Greeman EA, Barrett ST, Bevins RA. The Sugars in Alcohol Cocktails Matter. ACS Chem Neurosci 2021;12:3284-7. [PMID: 34428024 DOI: 10.1021/acschemneuro.1c00526] [Reference Citation Analysis]