BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019;179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Cited by in Crossref: 98] [Cited by in F6Publishing: 78] [Article Influence: 32.7] [Reference Citation Analysis]
Number Citing Articles
1 Ragionieri L, Predel R. The neuropeptidome of Carabus (Coleoptera, Adephaga: Carabidae). Insect Biochem Mol Biol 2020;118:103309. [PMID: 31870847 DOI: 10.1016/j.ibmb.2019.103309] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Yang Y, Xiong Y, Li HF, Zhao HJ, Tang GH, Meng LW, Wang JJ, Jiang HB. The adipokinetic hormone signaling system regulates the sensitivity of Bactrocera dorsalis to malathion. Pestic Biochem Physiol 2021;174:104808. [PMID: 33838709 DOI: 10.1016/j.pestbp.2021.104808] [Reference Citation Analysis]
3 Gao H, Li Y, Wang M, Song X, Tang J, Feng F, Li B. Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Front Endocrinol (Lausanne) 2021;12:773669. [PMID: 34899608 DOI: 10.3389/fendo.2021.773669] [Reference Citation Analysis]
4 Li X, Du L, Jiang XJ, Ju Q, Qu CJ, Qu MJ, Liu TX. Identification and Characterization of Neuropeptides and Their G Protein-Coupled Receptors (GPCRs) in the Cowpea Aphid Aphis craccivora. Front Endocrinol (Lausanne) 2020;11:640. [PMID: 33042012 DOI: 10.3389/fendo.2020.00640] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Cheng J, Zhao P, Zhu L, Zhu F, Tian Z, Shen Z, Liu X, Liu X. Corazonin signaling modulates the synthetic activity of male accessory gland in Grapholita molesta. Int J Biol Macromol 2022;216:446-55. [PMID: 35810848 DOI: 10.1016/j.ijbiomac.2022.07.025] [Reference Citation Analysis]
6 Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022;79:188. [PMID: 35286508 DOI: 10.1007/s00018-022-04214-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Zhang H, Bai J, Huang S, Liu H, Lin J, Hou Y. Neuropeptides and G-Protein Coupled Receptors (GPCRs) in the Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Physiol 2020;11:159. [PMID: 32184735 DOI: 10.3389/fphys.2020.00159] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
8 Liu D, Wang R, Wang Y, Wang Y, Wang L. Prospero homeobox 1 promotes proliferation, migration, and invasion of osteosarcoma cells and its clinical significance. Bioengineered 2022;13:2259-71. [PMID: 35030967 DOI: 10.1080/21655979.2021.2024330] [Reference Citation Analysis]
9 Godoy RSM, Barbosa RC, Procópio TF, Costa BA, Jacobs-Lorena M, Martins GF. FMRF-related peptides in Aedes aegypti midgut: neuromuscular connections and enteric nervous system. Cell Tissue Res 2021. [PMID: 33961128 DOI: 10.1007/s00441-021-03462-3] [Reference Citation Analysis]
10 Barredo CG, Gil-Marti B, Deveci D, Romero NM, Martin FA. Timing the Juvenile-Adult Neurohormonal Transition: Functions and Evolution. Front Endocrinol (Lausanne) 2020;11:602285. [PMID: 33643219 DOI: 10.3389/fendo.2020.602285] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Mahishi D, Huetteroth W. The prandial process in flies. Curr Opin Insect Sci 2019;36:157-66. [PMID: 31765996 DOI: 10.1016/j.cois.2019.09.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
12 Hsu IU, Linsley JW, Zhang X, Varineau JE, Berkhoudt DA, Reid LE, Lum MC, Orzel AM, Leflein A, Xu H, Collins CA, Hume RI, Levitan ES, Kuwada JY. Stac protein regulates release of neuropeptides. Proc Natl Acad Sci U S A 2020;117:29914-24. [PMID: 33168737 DOI: 10.1073/pnas.2009224117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Ben-Menahem D. GnRH-Related Neurohormones in the Fruit Fly Drosophila melanogaster. Int J Mol Sci 2021;22:5035. [PMID: 34068603 DOI: 10.3390/ijms22095035] [Reference Citation Analysis]
14 Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids 2021;1866:158924. [PMID: 33716135 DOI: 10.1016/j.bbalip.2021.158924] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Luo G, Chen X, Jiao Y, Zhu G, Zhang R, Dhandapani RK, Fang J, Palli SR. SoxC is Required for Ecdysteroid Induction of Neuropeptide Genes During Insect Eclosion. Front Genet 2022;13:942884. [DOI: 10.3389/fgene.2022.942884] [Reference Citation Analysis]
16 Gäde G, Šimek P, Marco HG. Biochemically identified neuropeptides in a caddisfly (Trichoptera) and a pygmy mole cricket (Orthoptera: Caelifera: Tridactyloidea). Arch Insect Biochem Physiol 2021;106:e21778. [PMID: 33719129 DOI: 10.1002/arch.21778] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021;12:674711. [PMID: 34234741 DOI: 10.3389/fendo.2021.674711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Allen AM, Neville MC, Birtles S, Croset V, Treiber CD, Waddell S, Goodwin SF. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. Elife 2020;9:e54074. [PMID: 32314735 DOI: 10.7554/eLife.54074] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 14.5] [Reference Citation Analysis]
19 Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020;77:4523-51. [PMID: 32448994 DOI: 10.1007/s00018-020-03547-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
20 Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2021;383:149-64. [PMID: 33275182 DOI: 10.1007/s00441-020-03329-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
21 Tinoco AB, Barreiro-Iglesias A, Yañez Guerra LA, Delroisse J, Zhang Y, Gunner EF, Zampronio CG, Jones AM, Egertová M, Elphick MR. Ancient role of sulfakinin/cholecystokinin-type signalling in inhibitory regulation of feeding processes revealed in an echinoderm. Elife 2021;10:e65667. [PMID: 34488941 DOI: 10.7554/eLife.65667] [Reference Citation Analysis]
22 Zhu Q, Wang J, Gao M, Lu L, Liu X. Neuropeptide F from endocrine cells in Plutella xylostella midgut modulates feeding and synergizes Cry1Ac action. Arch Insect Biochem Physiol 2021;108:e21845. [PMID: 34605064 DOI: 10.1002/arch.21845] [Reference Citation Analysis]
23 Hasebe M, Shiga S. Oviposition-promoting pars intercerebralis neurons show period-dependent photoperiodic changes in their firing activity in the bean bug. Proc Natl Acad Sci U S A 2021;118:e2018823118. [PMID: 33622784 DOI: 10.1073/pnas.2018823118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Nässel DR, Wu SF. Leucokinins: Multifunctional Neuropeptides and Hormones in Insects and Other Invertebrates. Int J Mol Sci 2021;22:1531. [PMID: 33546414 DOI: 10.3390/ijms22041531] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Almazán C, Šimo L, Fourniol L, Rakotobe S, Borneres J, Cote M, Peltier S, Mayé J, Versillé N, Richardson J, Bonnet SI. Multiple Antigenic Peptide-Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do Not Impact Tick Infestation. Pathogens 2020;9:E900. [PMID: 33126686 DOI: 10.3390/pathogens9110900] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Zieger E, Robert NS, Calcino A, Wanninger A. Ancestral Role of Ecdysis-Related Neuropeptides in Animal Life Cycle Transitions. Current Biology 2021;31:207-213.e4. [DOI: 10.1016/j.cub.2020.10.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
27 Sareen PF, McCurdy LY, Nitabach MN. A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila. Nat Commun 2021;12:4131. [PMID: 34226544 DOI: 10.1038/s41467-021-24423-y] [Reference Citation Analysis]
28 Choi MY, Vander Meer RK. GPCR-Based Bioactive Peptide Screening Using Phage-Displayed Peptides and an Insect Cell System for Insecticide Discovery. Biomolecules 2021;11:583. [PMID: 33923387 DOI: 10.3390/biom11040583] [Reference Citation Analysis]
29 Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021;12:701203. [PMID: 34267679 DOI: 10.3389/fphys.2021.701203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Habenstein J, Thamm M, Rössler W. Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus. J Comp Neurol 2021;529:3155-70. [PMID: 33950523 DOI: 10.1002/cne.25166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Gäde G, Šimek P, Marco HG. Structural diversity of adipokinetic hormones in the hyperdiverse coleopteran Cucujiformia. Arch Insect Biochem Physiol 2019;102:e21611. [PMID: 31471923 DOI: 10.1002/arch.21611] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
32 Yang T, Yuan Z, Liu C, Liu T, Zhang W. A neural circuit integrates pharyngeal sensation to control feeding. Cell Rep 2021;37:109983. [PMID: 34758309 DOI: 10.1016/j.celrep.2021.109983] [Reference Citation Analysis]
33 Luxmi R, Kumar D, Mains RE, King SM, Eipper BA. Cilia-based peptidergic signaling. PLoS Biol 2019;17:e3000566. [PMID: 31809498 DOI: 10.1371/journal.pbio.3000566] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
34 Ji Y, Li X, Ji T, Tang J, Qiu L, Hu J, Dong J, Luo S, Liu S, Frandsen PB, Zhou X, Parey SH, Li L, Niu Q, Zhou X. Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Sci Adv 2020;6:eabd3590. [PMID: 33355133 DOI: 10.1126/sciadv.abd3590] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
35 Shi Y, Pandit A, Nachman RJ, Christiaens O, Davies SA, Dow JAT, Smagghe G. Transcriptome analysis of neuropeptides in the beneficial insect lacewing (Chrysoperla carnea) identifies kinins as a selective pesticide target: a biostable kinin analogue with activity against the peach potato aphid Myzus persicae. J Pest Sci. [DOI: 10.1007/s10340-022-01511-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Nässel DR, Zandawala M, Kawada T, Satake H. Tachykinins: Neuropeptides That Are Ancient, Diverse, Widespread and Functionally Pleiotropic. Front Neurosci 2019;13:1262. [PMID: 31824255 DOI: 10.3389/fnins.2019.01262] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
37 Cheng J, Yang X, Tian Z, Shen Z, Wang X, Zhu L, Liu X, Li Z, Liu X. Coordinated transcriptomics and peptidomics of central nervous system identify neuropeptides and their G protein-coupled receptors in the oriental fruit moth Grapholita molesta. Comp Biochem Physiol Part D Genomics Proteomics 2021;40:100882. [PMID: 34273641 DOI: 10.1016/j.cbd.2021.100882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Maza FJ, Sztarker J, Cozzarin ME, Lepore MG, Delorenzi A. A crabs' high-order brain center resolved as a mushroom body-like structure. J Comp Neurol 2021;529:501-23. [PMID: 32484921 DOI: 10.1002/cne.24960] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
39 Jiang M, Zhao B, Luo S, Wang Q, Chu Y, Chen T, Mao X, Liu Y, Wang Y, Jiang X, Wei DQ, Xiong Y. NeuroPpred-Fuse: an interpretable stacking model for prediction of neuropeptides by fusing sequence information and feature selection methods. Brief Bioinform 2021:bbab310. [PMID: 34396388 DOI: 10.1093/bib/bbab310] [Reference Citation Analysis]
40 Mantziaris C, Bockemühl T, Büschges A. Central pattern generating networks in insect locomotion. Dev Neurobiol 2020;80:16-30. [PMID: 32128970 DOI: 10.1002/dneu.22738] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
41 DeLaney K, Hu M, Wu W, Nusbaum MP, Li L. Mass spectrometry profiling and quantitation of changes in circulating hormones secreted over time in Cancer borealis hemolymph due to feeding behavior. Anal Bioanal Chem 2021. [PMID: 34184104 DOI: 10.1007/s00216-021-03479-1] [Reference Citation Analysis]
42 Li F, Zhao X, Zhu S, Wang T, Li T, Woolfley T, Tang G. Identification and expression profiling of neuropeptides and neuropeptide receptor genes in Atrijuglans hetaohei. Gene 2020;743:144605. [PMID: 32199950 DOI: 10.1016/j.gene.2020.144605] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Hou X, Qin Z, Wei M, Fu Z, Liu R, Lu L, Bai S, Ma Y, Zhang Z. Identification of the neuropeptide precursor genes potentially involved in the larval settlement in the Echiuran worm Urechis unicinctus. BMC Genomics 2020;21:892. [PMID: 33317448 DOI: 10.1186/s12864-020-07312-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Nässel DR. Leucokinin and Associated Neuropeptides Regulate Multiple Aspects of Physiology and Behavior in Drosophila. Int J Mol Sci 2021;22:1940. [PMID: 33669286 DOI: 10.3390/ijms22041940] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Sadanandappa MK, Sathyanarayana SH, Kondo S, Bosco G. Neuropeptide F signaling regulates parasitoid-specific germline development and egg-laying in Drosophila. PLoS Genet 2021;17:e1009456. [PMID: 33770070 DOI: 10.1371/journal.pgen.1009456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Habenstein J, Schmitt F, Liessem S, Ly A, Trede D, Wegener C, Predel R, Rössler W, Neupert S. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. J Neurochem 2021;158:391-412. [PMID: 33704768 DOI: 10.1111/jnc.15346] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Chen SL, Liu BT, Lee WP, Liao SB, Deng YB, Wu CL, Ho SM, Shen BX, Khoo GH, Shiu WC, Chang CH, Shih HW, Wen JK, Lan TH, Lin CC, Tsai YC, Tzeng HF, Fu TF. WAKE-mediated modulation of cVA perception via a hierarchical neuro-endocrine axis in Drosophila male-male courtship behaviour. Nat Commun 2022;13:2518. [PMID: 35523813 DOI: 10.1038/s41467-022-30165-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Nässel DR, Pauls D, Huetteroth W. Neuropeptides in modulation of Drosophila behavior: how to get a grip on their pleiotropic actions. Curr Opin Insect Sci 2019;36:1-8. [PMID: 31280184 DOI: 10.1016/j.cois.2019.03.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
49 Wiggin TD, Goodwin PR, Donelson NC, Liu C, Trinh K, Sanyal S, Griffith LC. Covert sleep-related biological processes are revealed by probabilistic analysis in Drosophila. Proc Natl Acad Sci U S A 2020;117:10024-34. [PMID: 32303656 DOI: 10.1073/pnas.1917573117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
50 Scaplen KM, Talay M, Fisher JD, Cohn R, Sorkaç A, Aso Y, Barnea G, Kaun KR. Transsynaptic mapping of Drosophila mushroom body output neurons. Elife 2021;10:e63379. [PMID: 33570489 DOI: 10.7554/eLife.63379] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
51 Qi W, Wang G, Wang L. A novel satiety sensor detects circulating glucose and suppresses food consumption via insulin-producing cells in Drosophila. Cell Res 2021;31:580-8. [PMID: 33273704 DOI: 10.1038/s41422-020-00449-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
52 Silva V, Palacios-Muñoz A, Volonté M, Frenkel L, Ewer J, Ons S. Orcokinin neuropeptides regulate reproduction in the fruit fly, Drosophila melanogaster. Insect Biochem Mol Biol 2021;139:103676. [PMID: 34742859 DOI: 10.1016/j.ibmb.2021.103676] [Reference Citation Analysis]
53 Kim DH, Park JC, Lee YH, Hagiwara A, Lee JS. Genome-wide identification of 216 G protein-coupled receptor (GPCR) genes from the marine water flea Diaphanosoma celebensis. Comp Biochem Physiol Part D Genomics Proteomics 2021;40:100922. [PMID: 34655966 DOI: 10.1016/j.cbd.2021.100922] [Reference Citation Analysis]
54 Friedman DA, Johnson BR, Linksvayer TA. Distributed physiology and the molecular basis of social life in eusocial insects. Horm Behav 2020;122:104757. [PMID: 32305342 DOI: 10.1016/j.yhbeh.2020.104757] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
55 Ayub M, Hermiz M, Lange AB, Orchard I. SIFamide Influences Feeding in the Chagas Disease Vector, Rhodnius prolixus. Front Neurosci 2020;14:134. [PMID: 32153356 DOI: 10.3389/fnins.2020.00134] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
56 Deng S, Yan X, Xiong P, Li G, Ku T, Liu N, Liao C, Jiang G. Nanoscale cobalt-based metal-organic framework impairs learning and memory ability without noticeable general toxicity: First in vivo evidence. Science of The Total Environment 2021;771:145063. [DOI: 10.1016/j.scitotenv.2021.145063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
57 Wang YY, Zhang XY, Mu XR, Li X, Zhou M, Song YH, Xu KK, Li C. Insulin-Like ILP2 Regulates Trehalose Metabolism to Tolerate Hypoxia/Hypercapnia in Tribolium castaneum. Front Physiol 2022;13:857239. [PMID: 35514356 DOI: 10.3389/fphys.2022.857239] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Hull JJ, Stefanek MA, Dickinson PS, Christie AE. Cloning of the first cDNA encoding a putative CCRFamide precursor: identification of the brain, eyestalk ganglia, and cardiac ganglion as sites of CCRFamide expression in the American lobster, Homarus americanus. Invert Neurosci 2020;20:24. [PMID: 33244646 DOI: 10.1007/s10158-020-00257-z] [Reference Citation Analysis]
59 Guo D, Zhang YJ, Zhang S, Li J, Guo C, Pan YF, Zhang N, Liu CX, Jia YL, Li CY, Ma JY, Nässel DR, Gao CF, Wu SF. Cholecystokinin-like peptide mediates satiety by inhibiting sugar attraction. PLoS Genet 2021;17:e1009724. [PMID: 34398892 DOI: 10.1371/journal.pgen.1009724] [Reference Citation Analysis]
60 Wegener C, Chen J. Allatostatin A Signalling: Progress and New Challenges From a Paradigmatic Pleiotropic Invertebrate Neuropeptide Family. Front Physiol 2022;13:920529. [DOI: 10.3389/fphys.2022.920529] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Miroschnikow A, Schlegel P, Pankratz MJ. Making Feeding Decisions in the Drosophila Nervous System. Current Biology 2020;30:R831-40. [DOI: 10.1016/j.cub.2020.06.036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
62 Lyapina I, Ivanov V, Fesenko I. Peptidome: Chaos or Inevitability. Int J Mol Sci 2021;22:13128. [PMID: 34884929 DOI: 10.3390/ijms222313128] [Reference Citation Analysis]
63 Sizemore TR, Hurley LM, Dacks AM. Serotonergic modulation across sensory modalities. J Neurophysiol 2020;123:2406-25. [PMID: 32401124 DOI: 10.1152/jn.00034.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
64 Lee SS, Wu MN. Neural circuit mechanisms encoding motivational states in Drosophila. Curr Opin Neurobiol 2020;64:135-42. [PMID: 32563845 DOI: 10.1016/j.conb.2020.05.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
65 Ruiz D, Bajwa ST, Vanani N, Bajwa TA, Cavanaugh DJ. Slowpoke functions in circadian output cells to regulate rest:activity rhythms. PLoS One 2021;16:e0249215. [PMID: 33765072 DOI: 10.1371/journal.pone.0249215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly 2022;16:152-76. [DOI: 10.1080/19336934.2022.2061834] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Hückesfeld S, Schlegel P, Miroschnikow A, Schoofs A, Zinke I, Haubrich AN, Schneider-Mizell CM, Truman JW, Fetter RD, Cardona A, Pankratz MJ. Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila. Elife 2021;10:e65745. [PMID: 34085637 DOI: 10.7554/eLife.65745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Sachkova MY, Nordmann EL, Soto-Àngel JJ, Meeda Y, Górski B, Naumann B, Dondorp D, Chatzigeorgiou M, Kittelmann M, Burkhardt P. Neuropeptide repertoire and 3D anatomy of the ctenophore nervous system. Curr Biol 2021:S0960-9822(21)01245-8. [PMID: 34587474 DOI: 10.1016/j.cub.2021.09.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Wang Y, Wu X, Wang Z, Chen T, Zhou S, Chen J, Pang L, Ye X, Shi M, Huang J, Chen X. Symbiotic bracovirus of a parasite manipulates host lipid metabolism via tachykinin signaling. PLoS Pathog 2021;17:e1009365. [PMID: 33647060 DOI: 10.1371/journal.ppat.1009365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Ouyang Q, Hu S, Li L, Ran M, Zhu J, Zhao Y, Hu B, Hu J, He H, Li L, Wang J. Integrated mRNA and miRNA transcriptome analysis provides novel insights into the molecular mechanisms underlying goose pituitary development during the embryo-to-hatchling transition. Poult Sci 2021;100:101380. [PMID: 34358958 DOI: 10.1016/j.psj.2021.101380] [Reference Citation Analysis]
71 Down RE, Audsley N. In silico identification of neurohormones and neuropeptides and their G protein-coupled receptors in the sheep scab mite Psoroptes ovis : potential targets for alternative control strategies. International Journal of Acarology 2022;48:300-23. [DOI: 10.1080/01647954.2022.2083233] [Reference Citation Analysis]
72 Zhang Y, Zhou Y, Zhang X, Wang L, Zhong Y. Clock neurons gate memory extinction in Drosophila. Curr Biol 2021;31:1337-1343.e4. [PMID: 33545046 DOI: 10.1016/j.cub.2021.01.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Kim DH, Lee YH, Sayed AEH, Choi IY, Lee JS. Genome-wide identification of 194 G protein-coupled receptor (GPCR) genes from the water flea Daphnia magna. Comp Biochem Physiol Part D Genomics Proteomics 2022;42:100983. [PMID: 35367896 DOI: 10.1016/j.cbd.2022.100983] [Reference Citation Analysis]
74 Hull JJ, Gross RJ, Brent CS, Christie AE. Filling in the gaps: A reevaluation of the Lygus hesperus peptidome using an expanded de novo assembled transcriptome and molecular cloning. Gen Comp Endocrinol 2021;303:113708. [PMID: 33388363 DOI: 10.1016/j.ygcen.2020.113708] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Bin Y, Zhang W, Tang W, Dai R, Li M, Zhu Q, Xia J. Prediction of Neuropeptides from Sequence Information Using Ensemble Classifier and Hybrid Features. J Proteome Res 2020;19:3732-40. [DOI: 10.1021/acs.jproteome.0c00276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Nakai J, Totani Y, Hatakeyama D, Dyakonova VE, Ito E. Another Example of Conditioned Taste Aversion: Case of Snails. Biology (Basel) 2020;9:E422. [PMID: 33256267 DOI: 10.3390/biology9120422] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Seebacher F. Is Endothermy an Evolutionary By-Product? Trends Ecol Evol 2020;35:503-11. [PMID: 32396817 DOI: 10.1016/j.tree.2020.02.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
78 Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021;123:301-19. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Pan X, Connacher RP, O'Connor MB. Control of the insect metamorphic transition by ecdysteroid production and secretion. Curr Opin Insect Sci 2021;43:11-20. [PMID: 32950745 DOI: 10.1016/j.cois.2020.09.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
80 Zandawala M, Nguyen T, Balanyà Segura M, Johard HAD, Amcoff M, Wegener C, Paluzzi JP, Nässel DR. A neuroendocrine pathway modulating osmotic stress in Drosophila. PLoS Genet 2021;17:e1009425. [PMID: 33684132 DOI: 10.1371/journal.pgen.1009425] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
81 Ma T, Matsuoka S, Drummond-Barbosa D. RNAi-based screens uncover a potential new role for the orphan neuropeptide receptor Moody in Drosophila female germline stem cell maintenance. PLoS One 2020;15:e0243756. [PMID: 33307547 DOI: 10.1371/journal.pone.0243756] [Reference Citation Analysis]
82 Grinberg M, Levin R, Neuman H, Ziv O, Turjeman S, Gamliel G, Nosenko R, Koren O. Antibiotics increase aggression behavior and aggression-related pheromones and receptors in Drosophila melanogaster. iScience 2022;25:104371. [DOI: 10.1016/j.isci.2022.104371] [Reference Citation Analysis]
83 Lubawy J, Marciniak P, Rosiński G. Identification, Localization in the Central Nervous System and Novel Myostimulatory Effect of Allatostatins in Tenebrio molitor Beetle. Int J Mol Sci 2020;21:E3510. [PMID: 32429155 DOI: 10.3390/ijms21103510] [Reference Citation Analysis]
84 Yuan F, Wei C. Gene expression profiles in Malpighian tubules of the vector leafhopper Psammotettix striatus (L.) revealed regional functional diversity and heterogeneity. BMC Genomics 2022;23. [DOI: 10.1186/s12864-022-08300-6] [Reference Citation Analysis]
85 Zieger E, Calcino AD, Robert NSM, Baranyi C, Wanninger A. Ecdysis-related neuropeptide expression and metamorphosis in a non-ecdysozoan bilaterian. Evolution 2021. [PMID: 34268730 DOI: 10.1111/evo.14308] [Reference Citation Analysis]
86 Des Marteaux L, Xi J, Mano G, Goto SG. Circadian clock outputs regulating insect photoperiodism: A potential role for glutamate transporter. Biochem Biophys Res Commun 2021;589:100-6. [PMID: 34902745 DOI: 10.1016/j.bbrc.2021.12.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
87 Ahn SJ, Corcoran JA, Vander Meer RK, Choi MY. Identification and Characterization of GPCRs for Pyrokinin and CAPA Peptides in the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Pentatomidae). Front Physiol 2020;11:559. [PMID: 32547421 DOI: 10.3389/fphys.2020.00559] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
88 Li Q, Liu R, Ma R, Huang Y, Zhang Z, Zhang L, Zheng Z, Li X, Chen K, Chen C, Huang Y, Hou X. Brain transcriptome response to Streptococcus agalactiae infection and the heterogeneous regulation of neuropeptides on immune response in tilapia, Oreochromis niloticus. Aquaculture 2022;555:738222. [DOI: 10.1016/j.aquaculture.2022.738222] [Reference Citation Analysis]
89 Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022:S1084-9521(22)00116-1. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Reference Citation Analysis]
90 Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022;12:220174. [PMID: 35892199 DOI: 10.1098/rsob.220174] [Reference Citation Analysis]
91 Birgül Iyison N, Shahraki A, Kahveci K, Düzgün MB, Gün G. Are insect GPCRs ideal next‐generation pesticides: opportunities and challenges. FEBS J 2021;288:2727-45. [DOI: 10.1111/febs.15708] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Diesner M, Bläser M, Eckardt S, Iliffe TM, Boelen Theile E, Predel R. Expression pattern of CAPA/pyrokinin neuropeptide genes in Remipedia and silverfish: Rapid differentiation after gene duplication in early Hexapoda, followed by strong conservation of newly established features in insects. Peptides 2021;144:170610. [PMID: 34242680 DOI: 10.1016/j.peptides.2021.170610] [Reference Citation Analysis]
93 Bläser M, Predel R. Evolution of Neuropeptide Precursors in Polyneoptera (Insecta). Front Endocrinol (Lausanne) 2020;11:197. [PMID: 32373067 DOI: 10.3389/fendo.2020.00197] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
94 Ragionieri L, Verdonck R, Verlinden H, Marchal E, Vanden Broeck J, Predel R. Schistocerca neuropeptides - An update. J Insect Physiol 2021;136:104326. [PMID: 34767790 DOI: 10.1016/j.jinsphys.2021.104326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
95 Sun L, Zhang Z, Zhang R, Yu Y, Yang F, Tan A. Molecular Disruption of Ion Transport Peptide Receptor Results in Impaired Water Homeostasis and Developmental Defects in Bombyx mori. Front Physiol 2020;11:424. [PMID: 32508668 DOI: 10.3389/fphys.2020.00424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Guo D, Zhang S, Zhang Y, Ma J, Gao C, Wu S. Sulfakinin inhibits activity of digestive enzymes in the brown planthopper, Nilaparvata lugens. Journal of Asia-Pacific Entomology 2020;23:1073-82. [DOI: 10.1016/j.aspen.2020.09.004] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Oliphant A, Hawkes MKN, Cridge AG, Dearden PK. Transcriptomic characterisation of neuropeptides and their putative cognate G protein-coupled receptors during late embryo and stage-1 juvenile development of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus. Gen Comp Endocrinol 2020;292:113443. [PMID: 32097662 DOI: 10.1016/j.ygcen.2020.113443] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
98 Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020;382:233-66. [PMID: 32827072 DOI: 10.1007/s00441-020-03264-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
99 Ferreira CH, Moita MA. What can a non-eusocial insect tell us about the neural basis of group behaviour? Current Opinion in Insect Science 2019;36:118-24. [DOI: 10.1016/j.cois.2019.09.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
100 Xu G, Teng ZW, Gu GX, Qi YX, Guo L, Xiao S, Wang F, Fang Q, Wang F, Song QS, Stanley D, Ye GY. Genome-wide characterization and transcriptomic analyses of neuropeptides and their receptors in an endoparasitoid wasp, Pteromalus puparum. Arch Insect Biochem Physiol 2020;103:e21625. [PMID: 31565815 DOI: 10.1002/arch.21625] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
101 Liao S, Nässel DR. Drosophila Insulin-Like Peptide 8 (DILP8) in Ovarian Follicle Cells Regulates Ovulation and Metabolism. Front Endocrinol (Lausanne) 2020;11:461. [PMID: 32849266 DOI: 10.3389/fendo.2020.00461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
102 Tindell SJ, Rouchka EC, Arkov AL. Glial granules contain germline proteins in the Drosophila brain, which regulate brain transcriptome. Commun Biol 2020;3:699. [PMID: 33219296 DOI: 10.1038/s42003-020-01432-z] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Schoberleitner I, Bauer I, Huang A, Andreyeva EN, Sebald J, Pascher K, Rieder D, Brunner M, Podhraski V, Oemer G, Cázarez-García D, Rieder L, Keller MA, Winkler R, Fyodorov DV, Lusser A. CHD1 controls H3.3 incorporation in adult brain chromatin to maintain metabolic homeostasis and normal lifespan. Cell Rep 2021;37:109769. [PMID: 34610319 DOI: 10.1016/j.celrep.2021.109769] [Reference Citation Analysis]
104 Tian Y, Jiang C, Pan Y, Guo Z, Wang W, Luo X, Cao Z, Zhang B, Yang J, Shi Y, Zhou N, He X. Bombyx neuropeptide G protein-coupled receptor A14 and A15 are two functional G protein-coupled receptors for CCHamide neuropeptides. Insect Biochem Mol Biol 2021;131:103553. [PMID: 33582278 DOI: 10.1016/j.ibmb.2021.103553] [Reference Citation Analysis]
105 Kasprzak A, Adamek A. The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020;21:E3494. [PMID: 32429087 DOI: 10.3390/ijms21103494] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]