BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bangasser DA, Lee CS, Cook PA, Gee JC, Bhatnagar S, Valentino RJ. Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress. Physiol Behav 2013;122:228-36. [PMID: 23643825 DOI: 10.1016/j.physbeh.2013.04.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Alrayashi R, Braun RD, Muca A, Kühl A, Hali M, Holt AG. Postmortem neuroimaging: Temporal and spatial sensitivity of manganese-enhanced magnetic resonance imaging (MEMRI) and impact of Mn2+ uptake. Hear Res 2021;407:108276. [PMID: 34107410 DOI: 10.1016/j.heares.2021.108276] [Reference Citation Analysis]
2 Kommajosyula SP, Faingold CL. Neural activity in the periaqueductal gray and other specific subcortical structures is enhanced when a selective serotonin reuptake inhibitor selectively prevents seizure-induced sudden death in the DBA/1 mouse model of sudden unexpected death in epilepsy. Epilepsia 2019;60:1221-33. [PMID: 31056750 DOI: 10.1111/epi.14759] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
3 McCreary JK, Truica LS, Friesen B, Yao Y, Olson DM, Kovalchuk I, Cross AR, Metz GA. Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats. Neuroscience 2016;330:79-89. [PMID: 27241944 DOI: 10.1016/j.neuroscience.2016.05.046] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
4 Sato C, Sawada K, Wright D, Higashi T, Aoki I. Isotropic 25-Micron 3D Neuroimaging Using ex vivo Microstructural Manganese-Enhanced MRI (MEMRI). Front Neural Circuits 2018;12:110. [PMID: 30574072 DOI: 10.3389/fncir.2018.00110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
5 Cacace AT, Brozoski T, Berkowitz B, Bauer C, Odintsov B, Bergkvist M, Castracane J, Zhang J, Holt AG. Manganese enhanced magnetic resonance imaging (MEMRI): a powerful new imaging method to study tinnitus. Hear Res 2014;311:49-62. [PMID: 24583078 DOI: 10.1016/j.heares.2014.02.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
6 Pallarés V, Dudek M, Moreno A, Pérez-Ramírez Ú, Moratal D, Haaranen M, Ciccocioppo R, Sommer WH, Canals S, Hyytiä P. Neuroimaging reveals functionally distinct neuronal networks associated with high-level alcohol consumption in two genetic rat models. Behav Pharmacol 2021;32:229-38. [PMID: 32925226 DOI: 10.1097/FBP.0000000000000582] [Reference Citation Analysis]
7 Yu S, Lin W, Huang X, Jin X, Yao S, Wang B, Zhu H, Chen J. A theranostic Mn-based metal-organic framework for T1-weighted magnetic resonance property and chemodynamic therapy. Polyhedron 2021;205:115278. [DOI: 10.1016/j.poly.2021.115278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Almeida-Corrêa S, Czisch M, Wotjak CT. In Vivo Visualization of Active Polysynaptic Circuits With Longitudinal Manganese-Enhanced MRI (MEMRI). Front Neural Circuits 2018;12:42. [PMID: 29887796 DOI: 10.3389/fncir.2018.00042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 den Hollander B, Dudek M, Ojanperä I, Kankuri E, Hyytiä P, Korpi ER. Manganese-enhanced magnetic resonance imaging reveals differential long-term neuroadaptation after methamphetamine and the substituted cathinone 4-methylmethcathinone (mephedrone). Int J Neuropsychopharmacol 2014;18:pyu106. [PMID: 25522432 DOI: 10.1093/ijnp/pyu106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
10 Chakraborty N, Meyerhoff J, Jett M, Hammamieh R. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. In: Kobeissy FH, Stevens, SM, editors. Neuroproteomics. New York: Springer; 2017. pp. 117-54. [DOI: 10.1007/978-1-4939-6952-4_6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
11 Wiersielis KR, Ceretti A, Hall A, Famularo ST, Salvatore M, Ellis AS, Jang H, Wimmer ME, Bangasser DA. Sex differences in corticotropin releasing factor regulation of medial septum-mediated memory formation. Neurobiol Stress 2019;10:100150. [PMID: 30937355 DOI: 10.1016/j.ynstr.2019.100150] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
12 Wiersielis KR, Wicks B, Simko H, Cohen SR, Khantsis S, Baksh N, Waxler DE, Bangasser DA. Sex differences in corticotropin releasing factor-evoked behavior and activated networks. Psychoneuroendocrinology 2016;73:204-16. [PMID: 27521739 DOI: 10.1016/j.psyneuen.2016.07.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
13 Sommer WH, Canals S, Bifone A, Heilig M, Hyytiä P. From a systems view to spotting a hidden island: A narrative review implicating insula function in alcoholism. Neuropharmacology 2022;:108989. [PMID: 35217032 DOI: 10.1016/j.neuropharm.2022.108989] [Reference Citation Analysis]
14 Cole RD, Kawasumi Y, Parikh V, Bangasser DA. Corticotropin releasing factor impairs sustained attention in male and female rats. Behav Brain Res 2016;296:30-4. [PMID: 26306826 DOI: 10.1016/j.bbr.2015.08.023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
15 Yamagata AT, Guimarães NC, Santana DF, Gonçalves MR, Souza VC, Barbosa Júnior F, Pandossio JE, Santos VS. Gender influence on manganese induced depression-like behavior and Mn and Fe deposition in different regions of CNS and excretory organs in intraperitoneally exposed rats. Toxicology 2017;376:137-45. [PMID: 27181933 DOI: 10.1016/j.tox.2016.05.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
16 Dudek M, Abo-Ramadan U, Hermann D, Brown M, Canals S, Sommer WH, Hyytiä P. Brain activation induced by voluntary alcohol and saccharin drinking in rats assessed with manganese-enhanced magnetic resonance imaging. Addict Biol 2015;20:1012-21. [PMID: 25146961 DOI: 10.1111/adb.12179] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
17 Ferland CL, Harris EP, Lam M, Schrader LA. Facilitation of the HPA axis to a novel acute stress following chronic stress exposure modulates histone acetylation and the ERK/MAPK pathway in the dentate gyrus of male rats. Endocrinology 2014;155:2942-52. [PMID: 24693964 DOI: 10.1210/en.2013-1918] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
18 Kommajosyula SP, Randall ME, Brozoski TJ, Odintsov BM, Faingold CL. Specific subcortical structures are activated during seizure-induced death in a model of sudden unexpected death in epilepsy (SUDEP): A manganese-enhanced magnetic resonance imaging study. Epilepsy Res 2017;135:87-94. [PMID: 28646692 DOI: 10.1016/j.eplepsyres.2017.05.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
19 Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese‐enhanced magnetic resonance imaging of neural projections and activity. NMR in Biomedicine. [DOI: 10.1002/nbm.4675] [Reference Citation Analysis]
20 Salvatore M, Wiersielis KR, Luz S, Waxler DE, Bhatnagar S, Bangasser DA. Sex differences in circuits activated by corticotropin releasing factor in rats. Horm Behav 2018;97:145-53. [PMID: 29037972 DOI: 10.1016/j.yhbeh.2017.10.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]