BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 2010;100:419-28. [PMID: 20338186 DOI: 10.1016/j.physbeh.2010.03.009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 150] [Article Influence: 12.9] [Reference Citation Analysis]
Number Citing Articles
1 Teschemacher AG, Gourine AV, Kasparov S. A Role for Astrocytes in Sensing the Brain Microenvironment and Neuro-Metabolic Integration. Neurochem Res 2015;40:2386-93. [DOI: 10.1007/s11064-015-1562-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
2 Dupré DA, Tomycz N, Oh MY, Whiting D. Deep brain stimulation for obesity: past, present, and future targets. Neurosurg Focus 2015;38:E7. [PMID: 26030707 DOI: 10.3171/2015.3.FOCUS1542] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
3 Kenny PJ. Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci. 2011;12:638-651. [PMID: 22011680 DOI: 10.1038/nrn3105] [Cited by in Crossref: 237] [Cited by in F6Publishing: 227] [Article Influence: 21.5] [Reference Citation Analysis]
4 Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
5 Carvajal F, Alcaraz-iborra M, Lerma-cabrera JM, Valor LM, de la Fuente L, Sanchez-amate MDC, Cubero I. Orexin receptor 1 signaling contributes to ethanol binge-like drinking: Pharmacological and molecular evidence. Behavioural Brain Research 2015;287:230-7. [DOI: 10.1016/j.bbr.2015.03.046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
6 Chen J, Kawamura T, Sethi MK, Zaia J, Repunte-Canonigo V, Sanna PP. Heparan sulfate: Resilience factor and therapeutic target for cocaine abuse. Sci Rep 2017;7:13931. [PMID: 29066725 DOI: 10.1038/s41598-017-13960-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
7 Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, Di Nisio C, Shohreh R, Manippa F, Ricciuti A, Vacca M, Brunetti L. Central inhibitory effects on feeding induced by the adipo-myokine irisin. Eur J Pharmacol 2016;791:389-94. [PMID: 27614130 DOI: 10.1016/j.ejphar.2016.09.011] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
8 Mediavilla C, Cabello V, Risco S. SB-334867-A, a selective orexin-1 receptor antagonist, enhances taste aversion learning and blocks taste preference learning in rats. Pharmacol Biochem Behav 2011;98:385-91. [PMID: 21295056 DOI: 10.1016/j.pbb.2011.01.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
9 Petrovich GD. Learning and the motivation to eat: forebrain circuitry. Physiol Behav 2011;104:582-9. [PMID: 21549730 DOI: 10.1016/j.physbeh.2011.04.059] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
10 Wheeler DS, Wan S, Miller A, Angeli N, Adileh B, Hu W, Holland PC. Role of lateral hypothalamus in two aspects of attention in associative learning. Eur J Neurosci 2014;40:2359-77. [PMID: 24750426 DOI: 10.1111/ejn.12592] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
11 Fernø J, Señarís R, Diéguez C, Tena-Sempere M, López M. Orexins (hypocretins) and energy balance: More than feeding. Mol Cell Endocrinol 2015;418 Pt 1:17-26. [PMID: 26213323 DOI: 10.1016/j.mce.2015.07.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
12 Iigaya K, Horiuchi J, Mcdowall LM, Lam ACB, Sediqi Y, Polson JW, Carrive P, Dampney RAL. Blockade of orexin receptors with Almorexant reduces cardiorespiratory responses evoked from the hypothalamus but not baro- or chemoreceptor reflex responses. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2012;303:R1011-22. [DOI: 10.1152/ajpregu.00263.2012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
13 Cole S, Mayer HS, Petrovich GD. Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus. Sci Rep 2015;5:16143. [PMID: 26536818 DOI: 10.1038/srep16143] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
14 Lai F, Cucca F, Frau R, Corrias F, Schlich M, Caboni P, Fadda AM, Bassareo V. Systemic Administration of Orexin a Loaded Liposomes Potentiates Nucleus Accumbens Shell Dopamine Release by Sucrose Feeding. Front Psychiatry 2018;9:640. [PMID: 30559683 DOI: 10.3389/fpsyt.2018.00640] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. Food and Drug Reward: Overlapping Circuits in Human Obesity and Addiction. In: Carter CS, Dalley JW, editors. Brain Imaging in Behavioral Neuroscience. Berlin: Springer Berlin Heidelberg; 2012. pp. 1-24. [DOI: 10.1007/7854_2011_169] [Cited by in Crossref: 156] [Cited by in F6Publishing: 210] [Article Influence: 14.2] [Reference Citation Analysis]
16 Sanchez-Alavez M, Benedict J, Wills DN, Ehlers CL. Effect of suvorexant on event-related oscillations and EEG sleep in rats exposed to chronic intermittent ethanol vapor and protracted withdrawal. Sleep 2019;42:zsz020. [PMID: 30715515 DOI: 10.1093/sleep/zsz020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
17 Pace M, Adamantidis A, Facchin L, Bassetti C. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS One 2017;12:e0168430. [PMID: 28061506 DOI: 10.1371/journal.pone.0168430] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
18 Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37-46. [PMID: 21109477 DOI: 10.1016/j.tics.2010.11.001] [Cited by in Crossref: 703] [Cited by in F6Publishing: 629] [Article Influence: 58.6] [Reference Citation Analysis]
19 Burgess CR, Scammell TE. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J Neurosci 2012;32:12305-11. [PMID: 22956821 DOI: 10.1523/JNEUROSCI.2630-12.2012] [Cited by in Crossref: 82] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
20 Feillet CA, Bainier C, Mateo M, Blancas-velázquez A, Salaberry NL, Ripperger JA, Albrecht U, Mendoza J. Rev-erbα modulates the hypothalamic orexinergic system to influence pleasurable feeding behaviour in mice: Food-reward in clock mutants. Addiction Biology 2017;22:411-22. [DOI: 10.1111/adb.12339] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
21 Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021;22:3788. [PMID: 33917517 DOI: 10.3390/ijms22073788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Narayanaswami V, Dwoskin LP. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol Ther 2017;170:116-47. [PMID: 27773782 DOI: 10.1016/j.pharmthera.2016.10.015] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 11.5] [Reference Citation Analysis]
23 Pizza F, Magnani M, Indrio C, Plazzi G. The hypocretin system and psychiatric disorders. Curr Psychiatry Rep 2014;16:433. [PMID: 24363104 DOI: 10.1007/s11920-013-0433-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
24 van Zessen R, van der Plasse G, Adan RAH. Contribution of the mesolimbic dopamine system in mediating the effects of leptin and ghrelin on feeding. Proc Nutr Soc 2012;71:435-45. [DOI: 10.1017/s0029665112000614] [Cited by in Crossref: 48] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
25 Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One. 2015;10:e0119034. [PMID: 25793511 DOI: 10.1371/journal.pone.0119034] [Cited by in Crossref: 76] [Cited by in F6Publishing: 80] [Article Influence: 10.9] [Reference Citation Analysis]
26 Alcaraz-iborra M, Cubero I. Do Orexins contribute to impulsivity-driven binge consumption of rewarding stimulus and transition to drug/food dependence? Pharmacology Biochemistry and Behavior 2015;134:31-4. [DOI: 10.1016/j.pbb.2015.04.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
27 Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in rats. Psychopharmacology (Berl) 2013;226:155-65. [PMID: 23096770 DOI: 10.1007/s00213-012-2902-y] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 7.3] [Reference Citation Analysis]
28 Born S, Gauvin DV, Mukherjee S, Briscoe R. Preclinical assessment of the abuse potential of the orexin receptor antagonist, suvorexant. Regul Toxicol Pharmacol 2017;86:181-92. [PMID: 28279667 DOI: 10.1016/j.yrtph.2017.03.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
29 Freeman LR, Aston-Jones G. Activation of medial hypothalamic orexin neurons during a Go/No-Go task. Brain Res 2020;1731:145928. [PMID: 30176242 DOI: 10.1016/j.brainres.2018.08.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
30 Risco S, Mediavilla C. Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala. Behavioural Brain Research 2018;348:192-200. [DOI: 10.1016/j.bbr.2018.04.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
31 Lopez MF, Moorman DE, Aston-Jones G, Becker HC. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res 2016;1636:74-80. [PMID: 26851547 DOI: 10.1016/j.brainres.2016.01.049] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
32 Di Sebastiano AR, Coolen LM. Orexin and natural reward. Orexin/Hypocretin System. Elsevier; 2012. pp. 65-77. [DOI: 10.1016/b978-0-444-59489-1.00006-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
33 Lonstein JS, Linning‐duffy K, Tang Y, Moody A, Yan L. Impact of daytime light intensity on the central orexin (hypocretin) system of a diurnal rodent ( Arvicanthis niloticus ). Eur J Neurosci 2021;54:4167-81. [DOI: 10.1111/ejn.15248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018;11:220. [PMID: 30002617 DOI: 10.3389/fnmol.2018.00220] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
35 Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017;11:127. [PMID: 28373831 DOI: 10.3389/fnins.2017.00127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
36 Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019;13:88. [PMID: 30814925 DOI: 10.3389/fnins.2019.00088] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
37 Figlewicz DP, Bennett-Jay JL, Kittleson S, Sipols AJ, Zavosh A. Sucrose self-administration and CNS activation in the rat. Am J Physiol Regul Integr Comp Physiol 2011;300:R876-84. [PMID: 21307361 DOI: 10.1152/ajpregu.00655.2010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
38 Smith RJ, Aston-Jones G. Orexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur J Neurosci 2012;35:798-804. [PMID: 22356621 DOI: 10.1111/j.1460-9568.2012.08013.x] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 7.4] [Reference Citation Analysis]
39 Kuhn BN, Kalivas PW, Bobadilla AC. Understanding Addiction Using Animal Models. Front Behav Neurosci 2019;13:262. [PMID: 31849622 DOI: 10.3389/fnbeh.2019.00262] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
40 Schiffino FL, Siemian JN, Petrella M, Laing BT, Sarsfield S, Borja CB, Gajendiran A, Zuccoli ML, Aponte Y. Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation. PLoS One 2019;14:e0219522. [PMID: 31291348 DOI: 10.1371/journal.pone.0219522] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
41 Kisner A, Slocomb JE, Sarsfield S, Zuccoli ML, Siemian J, Gupta JF, Kumar A, Aponte Y. Electrophysiological properties and projections of lateral hypothalamic parvalbumin positive neurons. PLoS One 2018;13:e0198991. [PMID: 29894514 DOI: 10.1371/journal.pone.0198991] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
42 Brunault P, Salamé E, Jaafari N, Courtois R, Réveillère C, Silvain C, Benyamina A, Blecha L, Belin D, Ballon N. Why do liver transplant patients so often become obese? The addiction transfer hypothesis. Medical Hypotheses 2015;85:68-75. [DOI: 10.1016/j.mehy.2015.03.026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
43 Shimizu C, Wakita Y, Tsuchiya Y, Nabeshima T. Influence of Housing Systems on Physical, Emotional, and Cognitive Functions with Aging in DBA/2CrSlc Mice. Animals (Basel) 2020;10:E746. [PMID: 32344780 DOI: 10.3390/ani10040746] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Akbar M, Egli M, Cho YE, Song BJ, Noronha A. Medications for alcohol use disorders: An overview. Pharmacol Ther 2018;185:64-85. [PMID: 29191394 DOI: 10.1016/j.pharmthera.2017.11.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
45 Müller-Fielitz H, Lau M, Geißler C, Werner L, Winkler M, Raasch W. Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats. Br J Pharmacol 2015;172:857-68. [PMID: 25258168 DOI: 10.1111/bph.12949] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
46 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
47 Sil’kis IG. Possible Mechanisms for the Effects of Orexin on Hippocampal Functioning and Spatial Learning (analytical review). Neurosci Behav Physi 2013;43:1049-57. [DOI: 10.1007/s11055-013-9849-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
48 Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020;164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
49 López-Ferreras L, Richard JE, Anderberg RH, Nilsson FH, Olandersson K, Kanoski SE, Skibicka KP. Ghrelin's control of food reward and body weight in the lateral hypothalamic area is sexually dimorphic. Physiol Behav 2017;176:40-9. [PMID: 28213203 DOI: 10.1016/j.physbeh.2017.02.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
50 Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011;180:129-137. [PMID: 21335062 DOI: 10.1016/j.neuroscience.2011.02.016] [Cited by in Crossref: 223] [Cited by in F6Publishing: 216] [Article Influence: 20.3] [Reference Citation Analysis]
51 Srinivasan S, Simms JA, Nielsen CK, Lieske SP, Bito-Onon JJ, Yi H, Hopf FW, Bonci A, Bartlett SE. The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One 2012;7:e44726. [PMID: 23028593 DOI: 10.1371/journal.pone.0044726] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
52 Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology (Berl) 2011;214:805-18. [PMID: 21107540 DOI: 10.1007/s00213-010-2082-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
53 Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. Journal of Endocrinology 2014;220:T25-46. [DOI: 10.1530/joe-13-0398] [Cited by in Crossref: 155] [Cited by in F6Publishing: 66] [Article Influence: 19.4] [Reference Citation Analysis]
54 Mahler SV, de Wit H. Cue-reactors: individual differences in cue-induced craving after food or smoking abstinence. PLoS One 2010;5:e15475. [PMID: 21085667 DOI: 10.1371/journal.pone.0015475] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 3.8] [Reference Citation Analysis]
55 Parker KE, McCabe MP, Johns HW, Lund DK, Odu F, Sharma R, Thakkar MM, Cornelison DD, Will MJ. Neural activation patterns underlying basolateral amygdala influence on intra-accumbens opioid-driven consummatory versus appetitive high-fat feeding behaviors in the rat. Behav Neurosci 2015;129:812-21. [PMID: 26501175 DOI: 10.1037/bne0000095] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
56 Morgan AJ, Harrod SB, Lacy RT, Stanley EM, Fadel JR. Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend 2013;132:562-70. [PMID: 23664126 DOI: 10.1016/j.drugalcdep.2013.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
57 Kim AK, Brown RM, Lawrence AJ. The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship. Front Behav Neurosci 2012;6:78. [PMID: 23189046 DOI: 10.3389/fnbeh.2012.00078] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
58 Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 2014;17:1298-303. [PMID: 25254979 DOI: 10.1038/nn.3810] [Cited by in Crossref: 223] [Cited by in F6Publishing: 207] [Article Influence: 27.9] [Reference Citation Analysis]
59 Nollet M, Gaillard P, Tanti A, Girault V, Belzung C, Leman S. Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Neuropsychopharmacology 2012;37:2210-21. [PMID: 22713907 DOI: 10.1038/npp.2012.70] [Cited by in Crossref: 91] [Cited by in F6Publishing: 89] [Article Influence: 9.1] [Reference Citation Analysis]
60 Nollet M, Leman S. Role of Orexin in the Pathophysiology of Depression: Potential for Pharmacological Intervention. CNS Drugs 2013;27:411-22. [DOI: 10.1007/s40263-013-0064-z] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
61 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
62 Moore CF, Panciera JI, Sabino V, Cottone P. Neuropharmacology of compulsive eating. Philos Trans R Soc Lond B Biol Sci 2018;373:20170024. [PMID: 29352024 DOI: 10.1098/rstb.2017.0024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
63 Kwok C, Lei K, Pedrozo V, Anderson L, Ghotra S, Walsh M, Li L, Yu J, Hopf FW. Differential importance of nucleus accumbens Ox1Rs and AMPARs for female and male mouse binge alcohol drinking. Sci Rep 2021;11:231. [PMID: 33420199 DOI: 10.1038/s41598-020-79935-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
64 Ehlers CL, Benedict J, Wills D, Sanchez-Alavez M. PSPH-D-18-00526: Effect of a dual orexin receptor antagonist (DORA-12) on sleep and event-related oscillations in rats exposed to ethanol vapor during adolescence. Psychopharmacology (Berl) 2020;237:2917-27. [PMID: 31659377 DOI: 10.1007/s00213-019-05371-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
65 Petrovich GD, Hobin MP, Reppucci CJ. Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 2012;224:70-80. [PMID: 22922124 DOI: 10.1016/j.neuroscience.2012.08.036] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 5.2] [Reference Citation Analysis]
66 Jupp B, Krivdic B, Krstew E, Lawrence AJ. The orexin1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Research 2011;1391:54-9. [DOI: 10.1016/j.brainres.2011.03.045] [Cited by in Crossref: 92] [Cited by in F6Publishing: 93] [Article Influence: 8.4] [Reference Citation Analysis]
67 Figlewicz DP, Jay JL, Acheson MA, Magrisso IJ, West CH, Zavosh A, Benoit SC, Davis JF. Moderate high fat diet increases sucrose self-administration in young rats. Appetite 2013;61:19-29. [PMID: 23023044 DOI: 10.1016/j.appet.2012.09.021] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
68 Dehkordi O, Rose JE, Dávila-García MI, Millis RM, Mirzaei SA, Manaye KF, Jayam-Trouth A. Neuroanatomical Relationships between Orexin/Hypocretin-Containing Neurons/Nerve Fibers and Nicotine-Induced c-Fos-Activated Cells of the Reward-Addiction Neurocircuitry. J Alcohol Drug Depend 2017;5:273. [PMID: 29038792 DOI: 10.4172/2329-6488.1000273] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
69 Liu X, Gao S, Zhang N, Jin T, Sun X, Luan X, Xu L, Guo F. The orexinergic neural pathway from the lateral hypothalamus to the nucleus accumbens and its regulation of palatable food intake. Neuropeptides 2020;80:102028. [PMID: 32067750 DOI: 10.1016/j.npep.2020.102028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
70 Alizamini MM, Farzinpour Z, Ezzatpanah S, Haghparast A. Role of intra-accumbal orexin receptors in the acquisition of morphine-induced conditioned place preference in the rats. Neurosci Lett 2017;660:1-5. [PMID: 28889006 DOI: 10.1016/j.neulet.2017.09.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
71 Ardeshiri MR, Hosseinmardi N, Akbari E. The basolateral amygdala orexin 1 and 2 receptors’ involvement in modulating spatial reference memory. Brain Research 2019;1704:16-25. [DOI: 10.1016/j.brainres.2018.09.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Mahler SV, Smith RJ, Aston-Jones G. Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2013;226:687-98. [PMID: 22411428 DOI: 10.1007/s00213-012-2681-5] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 9.6] [Reference Citation Analysis]
73 Choi DL, Davis JF, Magrisso IJ, Fitzgerald ME, Lipton JW, Benoit SC. Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat. Neuroscience 2012;210:243-8. [PMID: 22433299 DOI: 10.1016/j.neuroscience.2012.02.036] [Cited by in Crossref: 87] [Cited by in F6Publishing: 76] [Article Influence: 8.7] [Reference Citation Analysis]
74 Sheng Z, Santiago AM, Thomas MP, Routh VH. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry. Mol Cell Neurosci 2014;62:30-41. [PMID: 25107627 DOI: 10.1016/j.mcn.2014.08.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 8.0] [Reference Citation Analysis]
75 Kallupi M, Cannella N, Economidou D, Ubaldi M, Ruggeri B, Weiss F, Massi M, Marugan J, Heilig M, Bonnavion P, de Lecea L, Ciccocioppo R. Neuropeptide S facilitates cue-induced relapse to cocaine seeking through activation of the hypothalamic hypocretin system. Proc Natl Acad Sci U S A 2010;107:19567-72. [PMID: 20974945 DOI: 10.1073/pnas.1004100107] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 5.3] [Reference Citation Analysis]
76 Olarte-Sánchez CM, Valencia Torres L, Body S, Cassaday HJ, Bradshaw CM, Szabadi E. Effect of orexin-B-saporin-induced lesions of the lateral hypothalamus on performance on a progressive ratio schedule. J Psychopharmacol 2012;26:871-86. [PMID: 21926428 DOI: 10.1177/0269881111409607] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
77 Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015;289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 8.6] [Reference Citation Analysis]
78 Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev 2013;14:2-18. [PMID: 23016694 DOI: 10.1111/j.1467-789X.2012.01031.x] [Cited by in Crossref: 431] [Cited by in F6Publishing: 229] [Article Influence: 43.1] [Reference Citation Analysis]
79 Lebedev AA, Bessolova YN, Efimov NS, Bychkov ER, Droblenkov AV, Shabanov PD. Role of orexin peptide system in emotional overeating induced by brain reward stimulation in fed rats. RRP 2020;6:81-91. [DOI: 10.3897/rrpharmacology.6.52180] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Ahmadian SM, Ghahremani P, Alaei H. Microinjection of a Dopamine-D1 Receptor Agonist into the Ventral Tegmental Area Reverses the Blocked Expression of Morphine Conditioned Place Preference by N-Methyl-D-Aspartate Receptor Antagonist. Adv Biomed Res 2020;9:54. [PMID: 33457337 DOI: 10.4103/abr.abr_11_20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Martin-Fardon R, Cauvi G, Kerr TM, Weiss F. Differential role of hypothalamic orexin/hypocretin neurons in reward seeking motivated by cocaine versus palatable food. Addict Biol 2018;23:6-15. [PMID: 27558790 DOI: 10.1111/adb.12441] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
82 Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in female rats. Neuropharmacology 2014;86:97-102. [PMID: 25036612 DOI: 10.1016/j.neuropharm.2014.07.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
83 Sakurai T. The role of orexin in motivated behaviours. Nat Rev Neurosci 2014;15:719-31. [DOI: 10.1038/nrn3837] [Cited by in Crossref: 244] [Cited by in F6Publishing: 221] [Article Influence: 30.5] [Reference Citation Analysis]
84 Arias-Carrión O, Caraza-Santiago X, Salgado-Licona S, Salama M, Machado S, Nardi AE, Menéndez-González M, Murillo-Rodríguez E. Orquestic regulation of neurotransmitters on reward-seeking behavior. Int Arch Med 2014;7:29. [PMID: 25061480 DOI: 10.1186/1755-7682-7-29] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
85 Levy A, Marshall P, Zhou Y, Kreek MJ, Kent K, Daniels S, Shore A, Downs T, Fernandes MF, Mutch DM, Leri F. Fructose:glucose ratios--a study of sugar self-administration and associated neural and physiological responses in the rat. Nutrients 2015;7:3869-90. [PMID: 26007337 DOI: 10.3390/nu7053869] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
86 Jauch-Chara K, Oltmanns KM. Obesity--a neuropsychological disease? Systematic review and neuropsychological model. Prog Neurobiol. 2014;114:84-101. [PMID: 24394671 DOI: 10.1016/j.pneurobio.2013.12.001] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 9.3] [Reference Citation Analysis]
87 Sun B, Liang NC, Ewald ER, Purcell RH, Boersma GJ, Yan J, Moran TH, Tamashiro KL. Early postweaning exercise improves central leptin sensitivity in offspring of rat dams fed high-fat diet during pregnancy and lactation. Am J Physiol Regul Integr Comp Physiol 2013;305:R1076-84. [PMID: 24026073 DOI: 10.1152/ajpregu.00566.2012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
88 Mena JD, Selleck RA, Baldo BA. Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothalamus in cortically driven feeding. J Neurosci 2013;33:18540-52. [PMID: 24259576 DOI: 10.1523/JNEUROSCI.3323-12.2013] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
89 Woods SC, Begg DP. Regulation of the Motivation to Eat. Curr Top Behav Neurosci 2016;27:15-34. [PMID: 26323244 DOI: 10.1007/7854_2015_381] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
90 Matzeu A, Martin-Fardon R. Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020;10:E226. [PMID: 32290110 DOI: 10.3390/brainsci10040226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
91 Mahmoudi D, Assar N, Mousavi Z, Katebi SN, Azizi P, Haghparast A. The orexin receptors in the ventral tegmental area are involved in the development of sensitization to expression of morphine-induced preference in rats. Behav Pharmacol 2020;31:759-67. [PMID: 32925229 DOI: 10.1097/FBP.0000000000000587] [Reference Citation Analysis]
92 Piccoli L, Micioni Di Bonaventura MV, Cifani C, Costantini VJ, Massagrande M, Montanari D, Martinelli P, Antolini M, Ciccocioppo R, Massi M, Merlo-Pich E, Di Fabio R, Corsi M. Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology 2012;37:1999-2011. [PMID: 22569505 DOI: 10.1038/npp.2012.48] [Cited by in Crossref: 86] [Cited by in F6Publishing: 84] [Article Influence: 8.6] [Reference Citation Analysis]
93 Coccurello R, Maccarrone M. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back. Front Neurosci 2018;12:271. [PMID: 29740277 DOI: 10.3389/fnins.2018.00271] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 10.5] [Reference Citation Analysis]
94 Howick K, Griffin BT, Cryan JF, Schellekens H. From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. Int J Mol Sci 2017;18:E273. [PMID: 28134808 DOI: 10.3390/ijms18020273] [Cited by in Crossref: 70] [Cited by in F6Publishing: 59] [Article Influence: 14.0] [Reference Citation Analysis]
95 Egecioglu E, Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Jerlhag E, Engel JA, Dickson SL. Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord 2011;12:141-51. [PMID: 21340584 DOI: 10.1007/s11154-011-9166-4] [Cited by in Crossref: 103] [Cited by in F6Publishing: 95] [Article Influence: 9.4] [Reference Citation Analysis]
96 Pandit R, de Jong JW, Vanderschuren LJ, Adan RA. Neurobiology of overeating and obesity: the role of melanocortins and beyond. Eur J Pharmacol 2011;660:28-42. [PMID: 21295024 DOI: 10.1016/j.ejphar.2011.01.034] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 5.4] [Reference Citation Analysis]
97 Rorabaugh JM, Stratford JM, Zahniser NR. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior. PLoS One. 2014;9:e95019. [PMID: 24736531 DOI: 10.1371/journal.pone.0095019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
98 Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2013;304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Cited by in Crossref: 93] [Cited by in F6Publishing: 91] [Article Influence: 9.3] [Reference Citation Analysis]
99 Berthoud HR, Münzberg H, Richards BK, Morrison CD. Neural and metabolic regulation of macronutrient intake and selection. Proc Nutr Soc 2012;71:390-400. [PMID: 22617310 DOI: 10.1017/S0029665112000559] [Cited by in Crossref: 50] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
100 Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021;14:dmm047217. [PMID: 33735098 DOI: 10.1242/dmm.047217] [Reference Citation Analysis]
101 Cason AM, Aston-Jones G. Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist. Psychopharmacology (Berl) 2013;228:499-507. [PMID: 23494235 DOI: 10.1007/s00213-013-3051-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 4.7] [Reference Citation Analysis]
102 Charles JR, Duva MA, Ramirez GJ, Lara RL, Yang CR, Stanley BG. Activation of lateral hypothalamic mGlu1 and mGlu5 receptors elicits feeding in rats. Neuropharmacology 2014;79:59-65. [PMID: 24219858 DOI: 10.1016/j.neuropharm.2013.10.033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
103 Castro DC, Berridge KC. Advances in the neurobiological bases for food 'liking' versus 'wanting'. Physiol Behav 2014;136:22-30. [PMID: 24874776 DOI: 10.1016/j.physbeh.2014.05.022] [Cited by in Crossref: 91] [Cited by in F6Publishing: 79] [Article Influence: 11.4] [Reference Citation Analysis]
104 Lei K, Wegner SA, Yu JH, Hopf FW. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 2016;110:431-7. [PMID: 27523303 DOI: 10.1016/j.neuropharm.2016.08.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
105 Keefer SE, Cole S, Petrovich GD. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction. Physiol Behav 2016;162:27-36. [PMID: 26945612 DOI: 10.1016/j.physbeh.2016.02.042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
106 Mori K, Kim J, Sasaki K. Electrophysiological effects of orexin-B and dopamine on rat nucleus accumbens shell neurons in vitro. Peptides 2011;32:246-52. [DOI: 10.1016/j.peptides.2010.10.023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
107 Oliva I, Wanat MJ. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors. Front Psychiatry 2016;7:30. [PMID: 27014097 DOI: 10.3389/fpsyt.2016.00030] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
108 Nillni EA. Neuropeptides Controlling Our Behavior. In: Nillni EA, editor. Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function. Cham: Springer International Publishing; 2018. pp. 29-54. [DOI: 10.1007/978-3-319-89506-2_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
109 Perez-Leighton CE, Billington CJ, Kotz CM. Orexin modulation of adipose tissue. Biochim Biophys Acta 2014;1842:440-5. [PMID: 23791983 DOI: 10.1016/j.bbadis.2013.06.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
110 Walker LC, Lawrence AJ. The Role of Orexins/Hypocretins in Alcohol Use and Abuse. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 221-46. [DOI: 10.1007/7854_2016_55] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
111 Finger BC, Dinan TG, Cryan JF. Progressive ratio responding in an obese mouse model: Effects of fenfluramine. Neuropharmacology 2010;59:619-26. [DOI: 10.1016/j.neuropharm.2010.08.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
112 Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021;172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2012;64:389-420. [DOI: 10.1124/pr.111.005546] [Cited by in Crossref: 114] [Cited by in F6Publishing: 107] [Article Influence: 11.4] [Reference Citation Analysis]
114 Waters RP, Moorman DE, Young AB, Feltenstein MW, See RE. Assessment of a proposed "three-criteria" cocaine addiction model for use in reinstatement studies with rats. Psychopharmacology (Berl) 2014;231:3197-205. [PMID: 24615055 DOI: 10.1007/s00213-014-3497-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
115 Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking. Front Neurosci 2016;10:400. [PMID: 27625592 DOI: 10.3389/fnins.2016.00400] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
116 Poon K, Ho HT, Barson JR, Leibowitz SF. Stimulatory role of the chemokine CCL2 in the migration and peptide expression of embryonic hypothalamic neurons. J Neurochem 2014;131:509-20. [PMID: 25039297 DOI: 10.1111/jnc.12827] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
117 Lee TH, Cheng KK, Hoo RL, Siu PM, Yau SY. The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci. 2019;20:5638. [PMID: 31718027 DOI: 10.3390/ijms20225638] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
118 Swick TJ. Treatment paradigms for cataplexy in narcolepsy: past, present, and future. Nat Sci Sleep 2015;7:159-69. [PMID: 26715865 DOI: 10.2147/NSS.S92140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
119 Mendoza J. Food intake and addictive-like eating behaviors: Time to think about the circadian clock(s). Neuroscience & Biobehavioral Reviews 2019;106:122-32. [DOI: 10.1016/j.neubiorev.2018.07.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
120 Skibicka KP, Dickson SL. Ghrelin and food reward: the story of potential underlying substrates. Peptides 2011;32:2265-73. [PMID: 21621573 DOI: 10.1016/j.peptides.2011.05.016] [Cited by in Crossref: 69] [Cited by in F6Publishing: 76] [Article Influence: 6.3] [Reference Citation Analysis]
121 Flores A, Maldonado R, Berrendero F. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Front Neurosci 2013;7:256. [PMID: 24391536 DOI: 10.3389/fnins.2013.00256] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
122 Alcaraz-iborra M, Carvajal F, Lerma-cabrera JM, Valor LM, Cubero I. Binge-like consumption of caloric and non-caloric palatable substances in ad libitum-fed C57BL/6J mice: Pharmacological and molecular evidence of orexin involvement. Behavioural Brain Research 2014;272:93-9. [DOI: 10.1016/j.bbr.2014.06.049] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
123 Lei K, Kwok C, Hopf FW. Nucleus accumbens shell Orexin-1 receptors are not needed for single-bottle limited daily access alcohol intake in C57BL/6 mice. Alcohol 2020;89:139-46. [PMID: 32987129 DOI: 10.1016/j.alcohol.2020.09.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
124 Pałasz A, Janas-kozik M, Borrow A, Arias-carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochemistry International 2018;113:120-36. [DOI: 10.1016/j.neuint.2017.12.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
125 Tavakkolifard M, Vousooghi N, Mahboubi S, Golab F, Ejtemaei Mehr S, Zarrindast MR. Evaluation of the relationship between the gene expression level of orexin-1 receptor in the rat blood and prefrontal cortex, novelty-seeking, and proneness to methamphetamine dependence: A candidate biomarker. Peptides 2020;131:170368. [PMID: 32668268 DOI: 10.1016/j.peptides.2020.170368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Zheng D, Cabeza de Vaca S, Carr KD. Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats. Pharmacol Biochem Behav 2012;100:538-44. [PMID: 22074687 DOI: 10.1016/j.pbb.2011.10.021] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
127 Holtz NA, Zlebnik NE, Carroll ME. Differential orexin/hypocretin expression in addiction-prone and -resistant rats selectively bred for high (HiS) and low (LoS) saccharin intake. Neurosci Lett 2012;522:12-5. [PMID: 22668854 DOI: 10.1016/j.neulet.2012.05.066] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
128 Matsuo E, Mochizuki A, Nakayama K, Nakamura S, Yamamoto T, Shioda S, Sakurai T, Yanagisawa M, Shiuchi T, Minokoshi Y, Inoue T. Decreased Intake of Sucrose Solutions in Orexin Knockout Mice. J Mol Neurosci 2011;43:217-24. [DOI: 10.1007/s12031-010-9475-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
129 Gotter AL, Roecker AJ, Hargreaves R, Coleman PJ, Winrow CJ, Renger JJ. Orexin receptors as therapeutic drug targets. Prog Brain Res 2012;198:163-88. [PMID: 22813974 DOI: 10.1016/B978-0-444-59489-1.00010-0] [Cited by in Crossref: 71] [Cited by in F6Publishing: 24] [Article Influence: 7.1] [Reference Citation Analysis]
130 Risco S, Mediavilla C. Orexin-1 receptor antagonist in central nucleus of the amygdala attenuates the acquisition of flavor-taste preference in rats. Pharmacol Biochem Behav 2014;126:7-12. [PMID: 25223979 DOI: 10.1016/j.pbb.2014.09.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
131 Zhang S, Zhornitsky S, Le TM, Li CR. Hypothalamic Responses to Cocaine and Food Cues in Individuals with Cocaine Dependence. Int J Neuropsychopharmacol 2019;22:754-64. [PMID: 31420667 DOI: 10.1093/ijnp/pyz044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
132 Berthoud HR. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol. 2011;21:888-896. [PMID: 21981809 DOI: 10.1016/j.conb.2011.09.004] [Cited by in Crossref: 281] [Cited by in F6Publishing: 254] [Article Influence: 25.5] [Reference Citation Analysis]
133 Kay K, Parise EM, Lilly N, Williams DL. Hindbrain orexin 1 receptors influence palatable food intake, operant responding for food, and food-conditioned place preference in rats. Psychopharmacology (Berl) 2014;231:419-27. [PMID: 23978908 DOI: 10.1007/s00213-013-3248-9] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
134 Khoo SY, Clemens KJ, Mcnally GP. Palatable food self-administration and reinstatement are not affected by dual orexin receptor antagonism. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;87:147-57. [DOI: 10.1016/j.pnpbp.2017.06.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
135 Gorwood P, Blanchet-Collet C, Chartrel N, Duclos J, Dechelotte P, Hanachi M, Fetissov S, Godart N, Melchior JC, Ramoz N, Rovere-Jovene C, Tolle V, Viltart O, Epelbaum J. New Insights in Anorexia Nervosa. Front Neurosci 2016;10:256. [PMID: 27445651 DOI: 10.3389/fnins.2016.00256] [Cited by in Crossref: 89] [Cited by in F6Publishing: 46] [Article Influence: 14.8] [Reference Citation Analysis]
136 Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sciences 2022;12:431. [DOI: 10.3390/brainsci12040431] [Reference Citation Analysis]
137 Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 2020;32:e12773. [PMID: 31329314 DOI: 10.1111/jne.12773] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
138 Younger J, Aron A, Parke S, Chatterjee N, Mackey S. Viewing pictures of a romantic partner reduces experimental pain: involvement of neural reward systems. PLoS One 2010;5:e13309. [PMID: 20967200 DOI: 10.1371/journal.pone.0013309] [Cited by in Crossref: 148] [Cited by in F6Publishing: 131] [Article Influence: 12.3] [Reference Citation Analysis]
139 Tomasi D, Volkow ND. Striatocortical pathway dysfunction in addiction and obesity: differences and similarities. Crit Rev Biochem Mol Biol 2013;48:1-19. [PMID: 23173916 DOI: 10.3109/10409238.2012.735642] [Cited by in Crossref: 156] [Cited by in F6Publishing: 138] [Article Influence: 15.6] [Reference Citation Analysis]
140 Petrovich GD. Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 2013;121:10-8. [PMID: 23562305 DOI: 10.1016/j.physbeh.2013.03.024] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 7.8] [Reference Citation Analysis]
141 Zhu F, Wang X, Chen Y, Yang N, Lang S, Zuo P, Zhang J, Li R. Changes and overlapping distribution in the expression of CB1/OX1-GPCRs in rat hippocampus by kainic acid-induced status epilepticus. Brain Research 2015;1597:14-27. [DOI: 10.1016/j.brainres.2014.11.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
142 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
143 Ziółkowski M, Czarnecki D, Budzyński J, Rosińska Z, Żekanowska E, Góralczyk B. Orexin in Patients with Alcohol Dependence Treated for Relapse Prevention: A Pilot Study. Alcohol Alcohol 2016;51:416-21. [PMID: 26597795 DOI: 10.1093/alcalc/agv129] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
144 Reissner KJ, Sartor GC, Vazey EM, Dunn TE, Aston-Jones G, Kalivas PW. Use of vivo-morpholinos for control of protein expression in the adult rat brain. J Neurosci Methods 2012;203:354-60. [PMID: 22027492 DOI: 10.1016/j.jneumeth.2011.10.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 2.7] [Reference Citation Analysis]
145 Zlebnik NE, Holtz NA, Lepak VC, Saykao AT, Zhang Y, Carroll ME. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend 2021;224:108719. [PMID: 33940327 DOI: 10.1016/j.drugalcdep.2021.108719] [Reference Citation Analysis]
146 Meffre J, Sicre M, Diarra M, Marchessaux F, Paleressompoulle D, Ambroggi F. Orexin in the Posterior Paraventricular Thalamus Mediates Hunger-Related Signals in the Nucleus Accumbens Core. Current Biology 2019;29:3298-3306.e4. [DOI: 10.1016/j.cub.2019.07.069] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
147 Rao Y, Mineur YS, Gan G, Wang AH, Liu ZW, Wu X, Suyama S, de Lecea L, Horvath TL, Picciotto MR, Gao XB. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice. J Physiol 2013;591:1951-66. [PMID: 23318871 DOI: 10.1113/jphysiol.2012.246983] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
148 Kalló I, Molnár CS, Szöke S, Fekete C, Hrabovszky E, Liposits Z. Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents. Front Neuroanat 2015;9:112. [PMID: 26388742 DOI: 10.3389/fnana.2015.00112] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
149 Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 2010;1350:18-34. [PMID: 20353764 DOI: 10.1016/j.brainres.2010.03.059] [Cited by in Crossref: 169] [Cited by in F6Publishing: 173] [Article Influence: 14.1] [Reference Citation Analysis]
150 Kim J, Ham S, Hong H, Moon C, Im HI. Brain Reward Circuits in Morphine Addiction. Mol Cells 2016;39:645-53. [PMID: 27506251 DOI: 10.14348/molcells.2016.0137] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 7.3] [Reference Citation Analysis]
151 Michael NJ, Elmquist JK. Coordination of metabolism, arousal, and reward by orexin/hypocretin neurons. J Clin Invest 2020;130:4540-2. [PMID: 32804153 DOI: 10.1172/JCI140585] [Reference Citation Analysis]
152 Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2015;49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
153 Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014;282:23-48. [PMID: 24735820 DOI: 10.1016/j.neuroscience.2014.04.010] [Cited by in Crossref: 110] [Cited by in F6Publishing: 103] [Article Influence: 13.8] [Reference Citation Analysis]