BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tan BWQ, Sim WL, Cheong JK, Kuan WS, Tran T, Lim HF. MicroRNAs in chronic airway diseases: Clinical correlation and translational applications. Pharmacol Res 2020;160:105045. [PMID: 32590100 DOI: 10.1016/j.phrs.2020.105045] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhao Y, Yu Y, Ommati MM, Xu J, Wang J, Zhang J, Sun Z, Niu R, Wang J. Multiomics Analysis Revealed the Molecular Mechanism of miRNAs in Fluoride-Induced Hepatic Glucose and Lipid Metabolism Disorders. J Agric Food Chem 2022. [PMID: 36222057 DOI: 10.1021/acs.jafc.2c03049] [Reference Citation Analysis]
2 Kopa-Stojak PN, Pawliczak R. Comparison of effects of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on miRNA-mediated gene expression. A systematic review. Toxicol Mech Methods 2022;:1-20. [PMID: 35722939 DOI: 10.1080/15376516.2022.2089610] [Reference Citation Analysis]
3 Huang Y, Chen H, Gao X, Ren H, Gao S. Identification and functional analysis of miRNAs in skeletal muscle of juvenile and adult largemouth bass, Micropterus salmoides. Comp Biochem Physiol Part D Genomics Proteomics 2022;42:100985. [PMID: 35381488 DOI: 10.1016/j.cbd.2022.100985] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Usman K, Hsieh A, Hackett TL. The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells 2021;10:1706. [PMID: 34359876 DOI: 10.3390/cells10071706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
5 Hajinejad M, Sahab-Negah S. Neuroinflammation: The next target of exosomal microRNAs derived from mesenchymal stem cells in the context of neurological disorders. J Cell Physiol 2021. [PMID: 34189724 DOI: 10.1002/jcp.30495] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Guo S, Chen R, Zhang L, Wu M, Wei Y, Dai W, Jiang Y, Kong X. microRNA-22-3p plays a protective role in a murine asthma model through the inhibition of the NLRP3-caspase-1-IL-1β axis. Exp Physiol 2021;106:1829-38. [PMID: 33932961 DOI: 10.1113/EP089575] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Gruzieva O, Merid SK, Koppelman GH, Melén E. An update on the epigenetics of asthma. Curr Opin Allergy Clin Immunol 2021;21:175-81. [PMID: 33620884 DOI: 10.1097/ACI.0000000000000723] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Dong L, Wang Y, Zheng T, Pu Y, Ma Y, Qi X, Zhang W, Xue F, Shan Z, Liu J, Wang X, Mao C. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Res Ther 2021;12:4. [PMID: 33407872 DOI: 10.1186/s13287-020-02072-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 25.0] [Reference Citation Analysis]
9 Chen Z, Chen P, Wu H, Shi R, Su W, Wang Y, Li P. Evaluation of Naringenin as a Promising Treatment Option for COPD Based on Literature Review and Network Pharmacology. Biomolecules 2020;10:E1644. [PMID: 33302350 DOI: 10.3390/biom10121644] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
10 Finicelli M, Squillaro T, Galderisi U, Peluso G. Micro-RNAs: Crossroads between the Exposure to Environmental Particulate Pollution and the Obstructive Pulmonary Disease. Int J Mol Sci 2020;21:E7221. [PMID: 33007849 DOI: 10.3390/ijms21197221] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]