1 |
Lodefalk M, Chelslín F, Patriksson Karlsson J, Hansson SR. Placental Changes and Neuropsychological Development in Children-A Systematic Review. Cells 2023;12. [PMID: 36766778 DOI: 10.3390/cells12030435] [Reference Citation Analysis]
|
2 |
Jiang L, Tang K, Magee LA, von Dadelszen P, Ekeroma A, Li X, Zhang E, Bhutta ZA. A global view of hypertensive disorders and diabetes mellitus during pregnancy. Nat Rev Endocrinol 2022;18:760-75. [PMID: 36109676 DOI: 10.1038/s41574-022-00734-y] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
3 |
Wilson RL, Lampe K, Gupta MK, Duvall CL, Jones HN. Nanoparticle-mediated transgene expression of insulin-like growth factor 1 in the growth restricted guinea pig placenta increases placenta nutrient transporter expression and fetal glucose concentrations. Mol Reprod Dev 2022;89:540-53. [PMID: 36094907 DOI: 10.1002/mrd.23644] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
4 |
Huang C, Wei K, Lee PMY, Qin G, Yu Y, Li J. Maternal hypertensive disorder of pregnancy and mortality in offspring from birth to young adulthood: national population based cohort study. BMJ 2022;379:e072157. [PMID: 36261141 DOI: 10.1136/bmj-2022-072157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Chandrasekar V, Singh AV, Maharjan RS, Dakua SP, Balakrishnan S, Dash S, Laux P, Luch A, Singh S, Pradhan M. Perspectives on the Technological Aspects and Biomedical Applications of Virus‐Like Particles/Nanoparticles in Reproductive Biology: Insights on the Medicinal and Toxicological Outlook. Advanced NanoBiomed Research. [DOI: 10.1002/anbr.202200010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
6 |
Jiang H, Li L, Zhu D, Zhou X, Yu Y, Zhou Q, Sun L. A Review of Nanotechnology for Treating Dysfunctional Placenta. Front Bioeng Biotechnol 2022;10:845779. [DOI: 10.3389/fbioe.2022.845779] [Reference Citation Analysis]
|
7 |
Ueda M, Tsuchiya KJ, Yaguchi C, Furuta-Isomura N, Horikoshi Y, Matsumoto M, Suzuki M, Oda T, Kawai K, Itoh T, Matsuya M, Narumi M, Kohmura-Kobayashi Y, Tamura N, Uchida T, Itoh H. Placental pathology predicts infantile neurodevelopment. Sci Rep 2022;12:2578. [PMID: 35173199 DOI: 10.1038/s41598-022-06300-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
8 |
Wu W, Tan QY, Xi FF, Ruan Y, Wang J, Luo Q, Dou XB, Hu TX. NLRP3 inflammasome activation in gestational diabetes mellitus placentas is associated with hydrogen sulfide synthetase deficiency. Exp Ther Med 2022;23:94. [PMID: 34976136 DOI: 10.3892/etm.2021.11017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Brien ME, Hughes K, Girard S. Prenatal administration of IL-1Ra attenuate the neurodevelopmental impacts following non-pathogenic inflammation during pregnancy. Sci Rep 2021;11:23404. [PMID: 34862457 DOI: 10.1038/s41598-021-02927-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
10 |
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. Environ Res 2021;205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Wilson RL, Lampe K, Gupta MK, Duvall CL, Jones HN. Nanoparticle-mediated transgene expression of insulin-like growth factor 1 in the growth restricted guinea pig placenta increases placenta nutrient transporter expression and fetal glucose concentrations.. [DOI: 10.1101/2021.06.24.449769] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
12 |
Camm EJ, Cross CM, Kane AD, Tarry-Adkins JL, Ozanne SE, Giussani DA. Maternal antioxidant treatment protects adult offspring against memory loss and hippocampal atrophy in a rodent model of developmental hypoxia. FASEB J 2021;35:e21477. [PMID: 33891326 DOI: 10.1096/fj.202002557RR] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
13 |
Spiroski AM, Niu Y, Nicholas LM, Austin-Williams S, Camm EJ, Sutherland MR, Ashmore TJ, Skeffington KL, Logan A, Ozanne SE, Murphy MP, Giussani DA. Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia. FASEB J 2021;35:e21446. [PMID: 33788974 DOI: 10.1096/fj.202002705R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
|
14 |
Bourque SL, Davidge ST. Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2020;134:3023-46. [PMID: 33231619 DOI: 10.1042/CS20191210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Hula N, Spaans F, Vu J, Quon A, Kirschenman R, Cooke CM, Phillips TJ, Case CP, Davidge ST. Placental treatment improves cardiac tolerance to ischemia/reperfusion insult in adult male and female offspring exposed to prenatal hypoxia. Pharmacol Res 2021;165:105461. [PMID: 33513355 DOI: 10.1016/j.phrs.2021.105461] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
16 |
Hosni A, El-Twab SA, Abdul-Hamid M, Prinsen E, AbdElgawad H, Abdel-Moneim A, Beemster GTS. Cinnamaldehyde mitigates placental vascular dysfunction of gestational diabetes and protects from the associated fetal hypoxia by modulating placental angiogenesis, metabolic activity and oxidative stress. Pharmacol Res 2021;165:105426. [PMID: 33453370 DOI: 10.1016/j.phrs.2021.105426] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Wilson RL, Jones HN. Targeting the Dysfunctional Placenta to Improve Pregnancy Outcomes Based on Lessons Learned in Cancer. Clin Ther 2021;43:246-64. [PMID: 33446335 DOI: 10.1016/j.clinthera.2020.12.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
|
18 |
Ganguly E, Kirschenman R, Spaans F, Holody CD, Phillips TEJ, Case CP, Cooke CM, Murphy MP, Lemieux H, Davidge ST. Nanoparticle-encapsulated antioxidant improves placental mitochondrial function in a sexually dimorphic manner in a rat model of prenatal hypoxia. FASEB J 2021;35:e21338. [PMID: 33428278 DOI: 10.1096/fj.202002193R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
19 |
Giussani DA. Working towards precision medicine in developmental programming. Pediatr Res 2021;89:1606-7. [PMID: 33753895 DOI: 10.1038/s41390-021-01466-x] [Reference Citation Analysis]
|
20 |
Pritchard N, Kaitu'u-Lino T, Harris L, Tong S, Hannan N. Nanoparticles in pregnancy: the next frontier in reproductive therapeutics. Hum Reprod Update 2021;27:280-304. [PMID: 33279994 DOI: 10.1093/humupd/dmaa049] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
21 |
Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta 2020;100:75-80. [PMID: 32862059 DOI: 10.1016/j.placenta.2020.08.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
|