BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bathgate RA, Kocan M, Scott DJ, Hossain MA, Good SV, Yegorov S, Bogerd J, Gooley PR. The relaxin receptor as a therapeutic target – perspectives from evolution and drug targeting. Pharmacology & Therapeutics 2018;187:114-32. [DOI: 10.1016/j.pharmthera.2018.02.008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Lv C, Zheng H, Jiang B, Ren Q, Zhang J, Zhang X, Li J, Wang Y. Characterization of relaxin 3 and its receptors in chicken: Evidence for relaxin 3 acting as a novel pituitary hormone. Front Physiol 2022;13. [DOI: 10.3389/fphys.2022.1010851] [Reference Citation Analysis]
2 Blasiak A, Gugula A, Gundlach AL, Olucha-bordonau FE, Aniello F, Donizetti A. Relaxin ligand/receptor systems in the developing teleost fish brain: Conserved features with mammals and a platform to address neuropeptide system functions. Front Mol Neurosci 2022;15:984524. [DOI: 10.3389/fnmol.2022.984524] [Reference Citation Analysis]
3 Chen TY, Li X, Goobie GC, Hung CH, Hung TK, Hamilton K, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. Identification of a distal RXFP1 gene enhancer with differential activity in fibrotic lung fibroblasts involving AP-1. PLoS One 2021;16:e0254466. [PMID: 34972106 DOI: 10.1371/journal.pone.0254466] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sethi A, Bruell S, Ryan T, Yan F, Tanipour MH, Mok YF, Draper-Joyce C, Khandokar Y, Metcalfe RD, Griffin MDW, Scott DJ, Hossain MA, Petrie EJ, Bathgate RAD, Gooley PR. Structural Insights into the Unique Modes of Relaxin-Binding and Tethered-Agonist Mediated Activation of RXFP1 and RXFP2. J Mol Biol 2021;433:167217. [PMID: 34454945 DOI: 10.1016/j.jmb.2021.167217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Chen T, Li X, Goobie GC, Hung C, Hamilton K, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. Identification of a distal RXFP1 gene enhancer with differential activity in fibrotic lung fibroblasts involving AP-1.. [DOI: 10.1101/2021.07.23.453556] [Reference Citation Analysis]
6 Prokhorova OV, Olina AA, Tolibova GK, Tral TG. Peptide hormone relaxin: from molecular effects to clinical results. jour 2021;20:89-96. [DOI: 10.52420/2071-5943-2021-20-1-89-96] [Reference Citation Analysis]
7 Abboud C, Brochoire L, Drouet A, Hossain MA, Hleihel W, Gundlach AL, Landry M. Analgesic effect of central relaxin receptor activation on persistent inflammatory pain in mice: behavioral and neurochemical data. Pain Rep 2021;6:e937. [PMID: 34159282 DOI: 10.1097/PR9.0000000000000937] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sethi A, Bruell S, Ryan T, Yan F, Tanipour M, Mok Y, Draper-joyce C, Khandokar Y, Metcalfe RD, Griffin MDW, Scott DJ, Hossain MA, Petrie EJ, Bathgate RAD, Gooley PR. Structural insights into the modes of relaxin-binding and tethered-agonist activation of RXFP1 and RXFP2.. [DOI: 10.1101/2021.06.06.446989] [Reference Citation Analysis]
9 Heredia F, Volonté Y, Pereirinha J, Fernandez-Acosta M, Casimiro AP, Belém CG, Viegas F, Tanaka K, Menezes J, Arana M, Cardoso GA, Macedo A, Kotowicz M, Prado Spalm FH, Dibo MJ, Monfardini RD, Torres TT, Mendes CS, Garelli A, Gontijo AM. The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction. Nat Commun 2021;12:3328. [PMID: 34099654 DOI: 10.1038/s41467-021-23218-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
10 Irwin DM. Evolution of the Insulin Gene: Changes in Gene Number, Sequence, and Processing. Front Endocrinol (Lausanne) 2021;12:649255. [PMID: 33868177 DOI: 10.3389/fendo.2021.649255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Crespo D, Assis LHC, Zhang YT, Safian D, Furmanek T, Skaftnesmo KO, Norberg B, Ge W, Choi YC, den Broeder MJ, Legler J, Bogerd J, Schulz RW. Insulin-like 3 affects zebrafish spermatogenic cells directly and via Sertoli cells. Commun Biol 2021;4:204. [PMID: 33589679 DOI: 10.1038/s42003-021-01708-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
12 Deadder NP, Gillam HJ, Wilson BC, Hogan MJ. Relaxin peptides reduce cellular damage in cultured brain slices exposed to transient oxygen–glucose deprivation: an effect mediated by nitric oxide. FACETS 2021;6:118-30. [DOI: 10.1139/facets-2020-0029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Mita M. Relaxins. Handbook of Hormones 2021. [DOI: 10.1016/b978-0-12-820649-2.00077-2] [Reference Citation Analysis]
14 Mita M, Matsubara S, Osugi T, Shiraishi A, Wada A, Satake H. A novel G protein-coupled receptor for starfish gonadotropic hormone, relaxin-like gonad-stimulating peptide. PLoS One 2020;15:e0242877. [PMID: 33226996 DOI: 10.1371/journal.pone.0242877] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Heredia F, Volonté Y, Pereirinha J, Fernandez-acosta M, Casimiro AP, Belém CG, Viegas F, Tanaka K, Menezes J, Arana M, Cardoso GA, Macedo A, Kotowicz M, Prado Spalm FH, Dibo MJ, Monfardini RD, Torres TT, Mendes CS, Garelli A, Gontijo AM. Innate Behavior Sequence Progression by Peptide-Mediated Interorgan Crosstalk.. [DOI: 10.1101/2020.10.10.334540] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Li P, Zhao G, Chen F, Ding Y, Wang T, Liu S, Lu W, Xu W, Flores J, Ocak U, Zhang T, Zhang JH, Tang J. Rh-relaxin-2 attenuates degranulation of mast cells by inhibiting NF-κB through PI3K-AKT/TNFAIP3 pathway in an experimental germinal matrix hemorrhage rat model. J Neuroinflammation 2020;17:250. [PMID: 32859236 DOI: 10.1186/s12974-020-01926-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Bani D. Recombinant human H2 relaxin (serelaxin) as a cardiovascular drug: aiming at the right target. Drug Discov Today 2020;25:1239-44. [PMID: 32360533 DOI: 10.1016/j.drudis.2020.04.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
18 Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020;8:e1194. [PMID: 32100955 DOI: 10.1002/mgg3.1194] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
19 Sun J, Hao W, Fillmore N, Ma H, Springer D, Yu ZX, Sadowska A, Garcia A, Chen R, Muniz-Medina V, Rosenthal K, Lin J, Kuruvilla D, Osbourn J, Karathanasis SK, Walker J, Murphy E. Human Relaxin-2 Fusion Protein Treatment Prevents and Reverses Isoproterenol-Induced Hypertrophy and Fibrosis in Mouse Heart. J Am Heart Assoc 2019;8:e013465. [PMID: 31818212 DOI: 10.1161/JAHA.119.013465] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
20 Welch NG, Mukherjee S, Hossain MA, Praveen P, Werkmeister JA, Wade JD, Bathgate RAD, Winkler DA, Thissen H. Coatings Releasing the Relaxin Peptide Analogue B7-33 Reduce Fibrotic Encapsulation. ACS Appl Mater Interfaces 2019;11:45511-9. [PMID: 31713411 DOI: 10.1021/acsami.9b17859] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
21 Mita M, Nakamura K, Tsutsui K, Katayama H. Interaction of starfish gonadotropin with its receptor: Effect of chimeric relaxin-like gonad-stimulating peptides. General and Comparative Endocrinology 2019;276:30-6. [DOI: 10.1016/j.ygcen.2019.02.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
22 Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues. Mol Cell Endocrinol 2019;487:2-11. [PMID: 30703485 DOI: 10.1016/j.mce.2019.01.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Leo CH, Jelinic M, Ng HH, Parry LJ, Tare M. Recent developments in relaxin mimetics as therapeutics for cardiovascular diseases. Curr Opin Pharmacol 2019;45:42-8. [PMID: 31048209 DOI: 10.1016/j.coph.2019.04.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
24 Mita M. Starfish Gonadotropic Hormone: From Gamete-Shedding Substance to Relaxin-Like Gonad-Stimulating Peptide. Front Endocrinol (Lausanne) 2019;10:182. [PMID: 30967842 DOI: 10.3389/fendo.2019.00182] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
25 Thanasupawat T, Glogowska A, Nivedita-Krishnan S, Wilson B, Klonisch T, Hombach-Klonisch S. Emerging roles for the relaxin/RXFP1 system in cancer therapy. Mol Cell Endocrinol 2019;487:85-93. [PMID: 30763603 DOI: 10.1016/j.mce.2019.02.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
26 Huynh P, Chai Z. Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci 2019;133:287-313. [DOI: 10.1042/cs20180438] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
27 Valkovic AL, Bathgate RA, Samuel CS, Kocan M. Understanding relaxin signalling at the cellular level. Mol Cell Endocrinol 2019;487:24-33. [PMID: 30592984 DOI: 10.1016/j.mce.2018.12.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
28 Valkovic AL, Leckey MB, Whitehead AR, Hossain MA, Inoue A, Kocan M, Bathgate RAD. Real-time examination of cAMP activity at relaxin family peptide receptors using a BRET-based biosensor. Pharmacol Res Perspect 2018;6:e00432. [PMID: 30263124 DOI: 10.1002/prp2.432] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
29 Ivell R, Anand-ivell R. Insulin-like peptide 3 (INSL3) is a major regulator of female reproductive physiology. Human Reproduction Update 2018;24:639-51. [DOI: 10.1093/humupd/dmy029] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]