BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gasbjerg LS, Gabe MBN, Hartmann B, Christensen MB, Knop FK, Holst JJ, Rosenkilde MM. Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents. Peptides 2018;100:173-81. [DOI: 10.1016/j.peptides.2017.11.021] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 9.4] [Reference Citation Analysis]
Number Citing Articles
1 Samuel SM, Varghese E, Kubatka P, Büsselberg D. Tirzepatide—Friend or Foe in Diabetic Cancer Patients? Biomolecules 2022;12:1580. [DOI: 10.3390/biom12111580] [Reference Citation Analysis]
2 Franklin ZJ, Lafferty RA, Flatt PR, Mcshane LM, O'harte FP, Irwin N. Metabolic effects of combined glucagon receptor antagonism and glucagon-like peptide-1 receptor agonism in high fat fed mice. Biochimie 2022. [DOI: 10.1016/j.biochi.2022.04.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem . [DOI: 10.1021/acs.jmedchem.1c01456] [Reference Citation Analysis]
4 Hang K, Shao L, Zhou Q, Zhao F, Dai A, Cai X, Stevens RC, Yang D, Wang M. Ligand-independent modulation of GIPR signaling by splice variants.. [DOI: 10.1101/2022.01.24.477496] [Reference Citation Analysis]
5 Asadi F, Dhanvantari S. Misrouting of glucagon and stathmin-2 towards lysosomal system of α-cells in glucagon hypersecretion of diabetes. Islets 2022;14:40-57. [DOI: 10.1080/19382014.2021.2011550] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Borg MJ, Xie C, Rayner CK, Horowitz M, Jones KL, Wu T. Potential for Gut Peptide-Based Therapy in Postprandial Hypotension. Nutrients 2021;13:2826. [PMID: 34444986 DOI: 10.3390/nu13082826] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Samms RJ, Christe ME, Collins KA, Pirro V, Droz BA, Holland AK, Friedrich JL, Wojnicki S, Konkol DL, Cosgrove R, Furber EPC, Ruan X, O'Farrell LS, Long AM, Dogra M, Willency JA, Lin Y, Ding L, Cheng CC, Cabrera O, Briere DA, Alsina-Fernandez J, Gimeno RE, Moyers JS, Coskun T, Coghlan MP, Sloop KW, Roell WC. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J Clin Invest 2021;131:146353. [PMID: 34003802 DOI: 10.1172/JCI146353] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 17.5] [Reference Citation Analysis]
8 Cabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, Mattellone A, Tolomelli A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front Mol Biosci 2021;8:697586. [PMID: 34195230 DOI: 10.3389/fmolb.2021.697586] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
9 Trifonova EA, Popovich AA, Makeeva OA, Minaycheva LI, Bocharova AV, Vagaitseva KV, Stepanov VA. Replicative Association Analysis of Genetic Markers of Obesity in the Russian Population. Russ J Genet 2021;57:620-625. [DOI: 10.1134/s1022795421050136] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Prior SL, Churm R, Min T, Dunseath GJ, Barry JD, Stephens JW. Temporal Effects of Sleeve Gastrectomy on Glucose-Insulin Homeostasis and Incretin Hormone Response at 1 and 6 Months. Obes Surg 2020;30:2243-50. [PMID: 32067166 DOI: 10.1007/s11695-020-04457-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Asadi F, Dhanvantari S. Misrouting of Glucagon and Stathmin-2 Towards Lysosomal System of α-Cells in Glucagon Hypersecretion of Diabetes.. [DOI: 10.1101/2021.04.08.439083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021;16:e0249239. [PMID: 33788878 DOI: 10.1371/journal.pone.0249239] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
13 Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021;32:264-94. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
14 Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2021;46:101139. [PMID: 33290902 DOI: 10.1016/j.molmet.2020.101139] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
15 Vardanyan GS, Harutyunyan HS, Aghajanov MI, Vardanyan RS. Neurochemical regulators of food behavior for pharmacological treatment of obesity: current status and future prospects. Future Med Chem 2020;12:1865-84. [PMID: 33040605 DOI: 10.4155/fmc-2019-0361] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
16 Yuliantie E, Darbalaei S, Dai A, Zhao P, Yang D, Sexton PM, Wang MW, Wootten D. Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem Pharmacol 2020;177:114001. [PMID: 32360365 DOI: 10.1016/j.bcp.2020.114001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
17 Tatarian T, Rona KA, Shin DH, Chen DG, Ducoin CG, Moore RL, Brunaldi VO, Galvão-neto M, Ardila-gatas J, Docimo S, Hourneax de Moura DT, Jirapinyo P, Thompson CC, Billy HT, Roslin MS, Borden B, Zarabi S, Sweigert PJ, Chand B, Pryor AD. Evolving procedural options for the treatment of obesity. Current Problems in Surgery 2020;57:100742. [DOI: 10.1016/j.cpsurg.2020.100742] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Irwin N, Gault VA, O’harte FP, Flatt PR. Blockade of gastric inhibitory polypeptide (GIP) action as a novel means of countering insulin resistance in the treatment of obesity-diabetes. Peptides 2020;125:170203. [DOI: 10.1016/j.peptides.2019.170203] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
19 Ahrén B, Yamada Y, Seino Y. Islet adaptation in GIP receptor knockout mice. Peptides 2020;125:170152. [DOI: 10.1016/j.peptides.2019.170152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Hasib A. Multiagonist Unimolecular Peptides for Obesity and Type 2 Diabetes: Current Advances and Future Directions. Clin Med Insights Endocrinol Diabetes 2020;13:1179551420905844. [PMID: 32110131 DOI: 10.1177/1179551420905844] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
21 Rosas-Pérez AM, Honma K, Goda T. Sustained effects of resistant starch on the expression of genes related to carbohydrate digestion/absorption in the small intestine. Int J Food Sci Nutr 2020;71:572-80. [PMID: 31976784 DOI: 10.1080/09637486.2019.1711362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
22 Camilleri M. Gastrointestinal hormones and regulation of gastric emptying. Curr Opin Endocrinol Diabetes Obes 2019;26:3-10. [PMID: 30418188 DOI: 10.1097/MED.0000000000000448] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
23 Atanes P, Persaud SJ. GPCR targets in type 2 diabetes. GPCRs 2020. [DOI: 10.1016/b978-0-12-816228-6.00018-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Zhang D, Ma M, Liu Y. Protective Effects of Incretin Against Age-Related Diseases. CDD 2019;16:793-806. [DOI: 10.2174/1567201816666191010145029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
25 Svendsen B, Capozzi ME, Nui J, Hannou SA, Finan B, Naylor J, Ravn P, D'Alessio DA, Campbell JE. Pharmacological antagonism of the incretin system protects against diet-induced obesity. Mol Metab 2020;32:44-55. [PMID: 32029229 DOI: 10.1016/j.molmet.2019.11.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
26 Gabe MBN, van der Velden WJC, Smit FX, Gasbjerg LS, Rosenkilde MM. Molecular interactions of full-length and truncated GIP peptides with the GIP receptor - A comprehensive review. Peptides 2020;125:170224. [PMID: 31809770 DOI: 10.1016/j.peptides.2019.170224] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
27 Knerr PJ, Mowery SA, Finan B, Perez-Tilve D, Tschöp MH, DiMarchi RD. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides 2020;125:170225. [PMID: 31786282 DOI: 10.1016/j.peptides.2019.170225] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
28 El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides 2020;125:170213. [PMID: 31785304 DOI: 10.1016/j.peptides.2019.170213] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
29 Thondam SK, Cuthbertson DJ, Wilding JPH. The influence of Glucose-dependent Insulinotropic Polypeptide (GIP) on human adipose tissue and fat metabolism: Implications for obesity, type 2 diabetes and Non-Alcoholic Fatty Liver Disease (NAFLD). Peptides 2020;125:170208. [PMID: 31759125 DOI: 10.1016/j.peptides.2019.170208] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
30 West JA, Ghosh SS, Parkes DG, Tsakmaki A, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Peptide-based GIP receptor inhibition exhibits modest metabolic changes in mice when administered either alone or combined with GLP-1 agonism.. [DOI: 10.1101/822122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Kamenický P, Lacroix A. Mechanism of ectopic hormone receptors in adrenal tumors and hyperplasia. Current Opinion in Endocrine and Metabolic Research 2019;8:206-12. [DOI: 10.1016/j.coemr.2019.08.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
32 Holst JJ, Albrechtsen NJW, Rosenkilde MM, Deacon CF. Physiology of the Incretin Hormones, GIP and GLP ‐1—Regulation of Release and Posttranslational Modifications. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 1339-81. [DOI: 10.1002/cphy.c180013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
33 Lee E, Miedzybrodzka EL, Zhang X, Hatano R, Miyamoto J, Kimura I, Fujimoto K, Uematsu S, Rodriguez-Cuenca S, Vidal-Puig A, Gribble FM, Reimann F, Miki T. Diet-Induced Obese Mice and Leptin-Deficient Lepob/ob Mice Exhibit Increased Circulating GIP Levels Produced by Different Mechanisms. Int J Mol Sci 2019;20:E4448. [PMID: 31509948 DOI: 10.3390/ijms20184448] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 Gabe MBN, van der Velden WJC, Gadgaard S, Smit FX, Hartmann B, Bräuner-Osborne H, Rosenkilde MM. Enhanced agonist residence time, internalization rate and signalling of the GIP receptor variant [E354Q] facilitate receptor desensitization and long-term impairment of the GIP system. Basic Clin Pharmacol Toxicol 2020;126 Suppl 6:122-32. [PMID: 31299132 DOI: 10.1111/bcpt.13289] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
35 Chia CW, Egan JM. Incretins in obesity and diabetes. Ann N Y Acad Sci. 2020;1461:104-126. [PMID: 31392745 DOI: 10.1111/nyas.14211] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 9.5] [Reference Citation Analysis]
36 Gromada J, Chabosseau P, Rutter GA. The α-cell in diabetes mellitus. Nat Rev Endocrinol 2018;14:694-704. [PMID: 30310153 DOI: 10.1038/s41574-018-0097-y] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 15.5] [Reference Citation Analysis]
37 Holst JJ. The incretin system in healthy humans: The role of GIP and GLP-1. Metabolism 2019;96:46-55. [DOI: 10.1016/j.metabol.2019.04.014] [Cited by in Crossref: 76] [Cited by in F6Publishing: 82] [Article Influence: 19.0] [Reference Citation Analysis]
38 Skov-Jeppesen K, Svane MS, Martinussen C, Gabe MBN, Gasbjerg LS, Veedfald S, Bojsen-Møller KN, Madsbad S, Holst JJ, Rosenkilde MM, Hartmann B. GLP-2 and GIP exert separate effects on bone turnover: A randomized, placebo-controlled, crossover study in healthy young men. Bone 2019;125:178-85. [PMID: 31100534 DOI: 10.1016/j.bone.2019.05.014] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
39 Pocai A. Modulation of Glucagon Signaling: A Metabolic Approach for Heart Failure? JACC Basic Transl Sci 2019;4:173-5. [PMID: 31061919 DOI: 10.1016/j.jacbts.2019.03.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
40 Capozzi ME, DiMarchi RD, Tschöp MH, Finan B, Campbell JE. Targeting the Incretin/Glucagon System With Triagonists to Treat Diabetes. Endocr Rev 2018;39:719-38. [PMID: 29905825 DOI: 10.1210/er.2018-00117] [Cited by in Crossref: 79] [Cited by in F6Publishing: 84] [Article Influence: 19.8] [Reference Citation Analysis]
41 Alexiadou K, Anyiam O, Tan T. Cracking the combination: Gut hormones for the treatment of obesity and diabetes. J Neuroendocrinol 2019;31:e12664. [PMID: 30466162 DOI: 10.1111/jne.12664] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
42 Mroz PA, Finan B, Gelfanov V, Yang B, Tschöp MH, DiMarchi RD, Perez-Tilve D. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol Metab 2019;20:51-62. [PMID: 30578168 DOI: 10.1016/j.molmet.2018.12.001] [Cited by in Crossref: 88] [Cited by in F6Publishing: 70] [Article Influence: 17.6] [Reference Citation Analysis]
43 Wu Y, Hu Y, Yuan Y, Luo Y, lai D, Zhou H, Tong Z, Liu D. Gymnemic acid I triggers mechanistic target of rapamycin‐mediated β cells cytoprotection through the promotion of autophagy under high glucose stress. J Cell Physiol 2019;234:9370-7. [DOI: 10.1002/jcp.27621] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
44 Ruban A, Ashrafian H, Teare JP. The EndoBarrier: Duodenal-Jejunal Bypass Liner for Diabetes and Weight Loss. Gastroenterol Res Pract 2018;2018:7823182. [PMID: 30147720 DOI: 10.1155/2018/7823182] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
45 Sloop KW, Briere DA, Emmerson PJ, Willard FS. Beyond Glucagon-like Peptide-1: Is G-Protein Coupled Receptor Polypharmacology the Path Forward to Treating Metabolic Diseases? ACS Pharmacol Transl Sci 2018;1:3-11. [PMID: 32219200 DOI: 10.1021/acsptsci.8b00009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
46 Ma J, Vella A. What Has Bariatric Surgery Taught Us About the Role of the Upper Gastrointestinal Tract in the Regulation of Postprandial Glucose Metabolism? Front Endocrinol (Lausanne) 2018;9:324. [PMID: 29997575 DOI: 10.3389/fendo.2018.00324] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]