BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peng S, Wang J, Wei S, Li C, Zhou K, Hu J, Ye X, Yan J, Liu W, Gao GF, Fang M, Meng S. Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus. Mol Ther Nucleic Acids 2018;10:361-75. [PMID: 29499948 DOI: 10.1016/j.omtn.2017.12.016] [Cited by in Crossref: 42] [Cited by in F6Publishing: 50] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Latini A, Vancheri C, Amati F, Morini E, Grelli S, Claudia M, Vita P, Colona VL, Murdocca M, Andreoni M, Malagnino V, Raponi M, Cocciadiferro D, Novelli A, Borgiani P, Novelli G. Expression analysis of miRNA hsa-let7b-5p in naso-oropharyngeal swabs of COVID-19 patients supports its role in regulating ACE2 and DPP4 receptors. J Cell Mol Med 2022. [PMID: 36073344 DOI: 10.1111/jcmm.17492] [Reference Citation Analysis]
2 Medina L, Guerrero-Muñoz J, Castillo C, Liempi A, Fernández-Moya A, Araneda S, Ortega Y, Rivas C, Maya JD, Kemmerling U. Differential microRNAs expression during ex vivo infection of canine and ovine placental explants with Trypanosoma cruzi and Toxoplasma gondii. Acta Trop 2022;235:106651. [PMID: 35964709 DOI: 10.1016/j.actatropica.2022.106651] [Reference Citation Analysis]
3 Huang J, Wang Y, Zha Y, Zeng X, Li W, Zhou M. Transcriptome Analysis Reveals Hub Genes Regulating Autophagy in Patients With Severe COVID-19. Front Genet 2022;13:908826. [DOI: 10.3389/fgene.2022.908826] [Reference Citation Analysis]
4 Ahmed JQ, Maulud SQ, Dhawan M, Priyanka, Choudhary OP, Jalal PJ, Ali RK, Tayib GA, Hasan DA. MicroRNAs in the development of potential therapeutic targets against COVID-19: A narrative review. J Infect Public Health 2022;15:788-99. [PMID: 35751930 DOI: 10.1016/j.jiph.2022.06.012] [Reference Citation Analysis]
5 Saengchoowong S, Nimsamer P, Khongnomnan K, Poomipak W, Praianantathavorn K, Rattanaburi S, Poovorawan Y, Zhang Q, Payungporn S. Enhancing the yield of seasonal influenza viruses through manipulation of microRNAs in Madin-Darby canine kidney cells. Exp Biol Med (Maywood) 2022;:15353702221098340. [PMID: 35666095 DOI: 10.1177/15353702221098340] [Reference Citation Analysis]
6 Li C, Wang R, Wu A, Yuan T, Song K, Bai Y, Liu X. SARS-COV-2 as potential microRNA sponge in COVID-19 patients. BMC Med Genomics 2022;15:94. [PMID: 35461273 DOI: 10.1186/s12920-022-01243-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Hassan M, Iqbal MS, Naqvi S, Alashwal H, Moustafa AA, Kloczkowski A. Prediction of Site Directed miRNAs as Key Players of Transcriptional Regulators Against Influenza C Virus Infection Through Computational Approaches. Front Mol Biosci 2022;9:866072. [DOI: 10.3389/fmolb.2022.866072] [Reference Citation Analysis]
8 Vadivalagan C, Shitu A, Kamalakannan S, Chen R, Serrano-aroca Á, Mishra V, Aljabali AA, Singh SK, Chellappan DK, Gupta G, Dua K, El-tanani M, Tambuwala MM, Krishnan A. Exosomal mediated signal transduction through artificial microRNA (amiRNA): A potential target for inhibition of SARS-CoV-2. Cellular Signalling 2022. [DOI: 10.1016/j.cellsig.2022.110334] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021;14:51. [PMID: 35062254 DOI: 10.3390/v14010051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sajjad N, Wang S, Liu P, Chen JL, Chi X, Liu S, Ma S. Functional Roles of Non-coding RNAs in the Interaction Between Host and Influenza A Virus. Front Microbiol 2021;12:742984. [PMID: 34745043 DOI: 10.3389/fmicb.2021.742984] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Ali N, Prasad K, AlAsmari AF, Alharbi M, Rashid S, Kumar V. Genomics-guided targeting of stress granule proteins G3BP1/2 to inhibit SARS-CoV-2 propagation. Int J Biol Macromol 2021;190:636-48. [PMID: 34517025 DOI: 10.1016/j.ijbiomac.2021.09.018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mousavi SR, Sajjadi MS, Khosravian F, Feizbakhshan S, Salmanizadeh S, Esfahani ZT, Beni FA, Arab A, Kazemi M, Shahzamani K, Sami R, Hosseinzadeh M, Salehi M, Lotfi H. Dysregulation of RNA interference components in COVID-19 patients. BMC Res Notes 2021;14:401. [PMID: 34715923 DOI: 10.1186/s13104-021-05816-0] [Reference Citation Analysis]
13 Baggen J, Vanstreels E, Jansen S, Daelemans D. Cellular host factors for SARS-CoV-2 infection. Nat Microbiol 2021;6:1219-32. [PMID: 34471255 DOI: 10.1038/s41564-021-00958-0] [Cited by in F6Publishing: 29] [Reference Citation Analysis]
14 Milenkovic D, Ruskovska T, Rodriguez-Mateos A, Heiss C. Polyphenols Could Prevent SARS-CoV-2 Infection by Modulating the Expression of miRNAs in the Host Cells. Aging Dis 2021;12:1169-82. [PMID: 34341700 DOI: 10.14336/AD.2021.0223] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
15 Brimson JM, Prasanth MI, Malar DS, Brimson S, Thitilertdecha P, Tencomnao T. Drugs that offer the potential to reduce hospitalization and mortality from SARS-CoV-2 infection: The possible role of the sigma-1 receptor and autophagy. Expert Opin Ther Targets 2021;:1-15. [PMID: 34236922 DOI: 10.1080/14728222.2021.1952987] [Reference Citation Analysis]
16 Siqueira IR, Palazzo RP, Cechinel LR. Circulating extracellular vesicles delivering beneficial cargo as key players in exercise effects. Free Radic Biol Med 2021;172:273-85. [PMID: 34119583 DOI: 10.1016/j.freeradbiomed.2021.06.007] [Reference Citation Analysis]
17 de Gonzalo-Calvo D, Benítez ID, Pinilla L, Carratalá A, Moncusí-Moix A, Gort-Paniello C, Molinero M, González J, Torres G, Bernal M, Pico S, Almansa R, Jorge N, Ortega A, Bustamante-Munguira E, Gómez JM, González-Rivera M, Micheloud D, Ryan P, Martinez A, Tamayo L, Aldecoa C, Ferrer R, Ceccato A, Fernández-Barat L, Motos A, Riera J, Menéndez R, Garcia-Gasulla D, Peñuelas O, Torres A, Bermejo-Martin JF, Barbé F; CIBERESUCICOVID Project (COV20/00110, ISCIII). Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl Res 2021:S1931-5244(21)00122-5. [PMID: 34048985 DOI: 10.1016/j.trsl.2021.05.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Othumpangat S, Beezhold DH, Umbright CM, Noti JD. Influenza Virus-Induced Novel miRNAs Regulate the STAT Pathway. Viruses 2021;13:967. [PMID: 34071096 DOI: 10.3390/v13060967] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Hasan M, Ashik AI, Chowdhury MB, Tasnim AT, Nishat ZS, Hossain T, Ahmed S. Computational prediction of potential siRNA and human miRNA sequences to silence orf1ab associated genes for future therapeutics against SARS-CoV-2. Inform Med Unlocked 2021;24:100569. [PMID: 33846694 DOI: 10.1016/j.imu.2021.100569] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Rizkita LD, Astuti I. The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review. J Pharm Anal 2021;11:265-71. [PMID: 33782640 DOI: 10.1016/j.jpha.2021.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
21 Bamunuarachchi G, Pushparaj S, Liu L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol 2021;18:767-84. [PMID: 33404285 DOI: 10.1080/15476286.2021.1872170] [Reference Citation Analysis]
22 Bagheri HS, Karimipour M, Heidarzadeh M, Rajabi H, Sokullu E, Rahbarghazi R. Does the Global Outbreak of COVID-19 or Other Viral Diseases Threaten the Stem Cell Reservoir Inside the Body? Stem Cell Rev Rep 2021;17:214-30. [PMID: 33403490 DOI: 10.1007/s12015-020-10108-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Farshbaf A, Mohtasham N, Zare R, Mohajertehran F, Rezaee SA. Potential therapeutic approaches of microRNAs for COVID-19: Challenges and opportunities. J Oral Biol Craniofac Res 2021;11:132-7. [PMID: 33398242 DOI: 10.1016/j.jobcr.2020.12.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Haque MM, Murale DP, Lee JS. Role of microRNA and Oxidative Stress in Influenza A Virus Pathogenesis. Int J Mol Sci 2020;21:E8962. [PMID: 33255826 DOI: 10.3390/ijms21238962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
25 Chan AP, Choi Y, Schork NJ. Conserved Genomic Terminals of SARS-CoV-2 as Coevolving Functional Elements and Potential Therapeutic Targets. mSphere 2020;5:e00754-20. [PMID: 33239366 DOI: 10.1128/mSphere.00754-20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
26 Liu X, Li F, Zhang J, Wang L, Wang J, Wen Z, Wang Z, Shuai L, Wang X, Ge J, Zhao D, Bu Z. The ATPase ATP6V1A facilitates rabies virus replication by promoting virion uncoating and interacting with the viral matrix protein. J Biol Chem 2021;296:100096. [PMID: 33208464 DOI: 10.1074/jbc.RA120.014190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
27 Yang X, Liang Y, Bamunuarachchi G, Xu Y, Vaddadi K, Pushparaj S, Xu D, Zhu Z, Blaha R, Huang C, Liu L. miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch Virol 2021;166:363-73. [PMID: 33206218 DOI: 10.1007/s00705-020-04877-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
28 Song J, Sun H, Sun H, Jiang Z, Zhu J, Wang C, Gao W, Wang T, Pu J, Sun Y, Yuan HY, Liu J. Swine MicroRNAs ssc-miR-221-3p and ssc-miR-222 Restrict the Cross-Species Infection of Avian Influenza Virus. J Virol 2020;94:e01700-20. [PMID: 32907982 DOI: 10.1128/JVI.01700-20] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
29 Szabat M, Lorent D, Czapik T, Tomaszewska M, Kierzek E, Kierzek R. RNA Secondary Structure as a First Step for Rational Design of the Oligonucleotides towards Inhibition of Influenza A Virus Replication. Pathogens 2020;9:E925. [PMID: 33171815 DOI: 10.3390/pathogens9110925] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
30 Zhang F, Lin X, Yang X, Lu G, Zhang Q, Zhang C. MicroRNA-132-3p suppresses type I IFN response through targeting IRF1 to facilitate H1N1 influenza A virus infection. Biosci Rep 2019;39:BSR20192769. [PMID: 31746331 DOI: 10.1042/BSR20192769] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
31 Saini J, Bandyopadhyay B, Pandey AD, Ramachandran VG, Das S, Sood V, Banerjee A, Vrati S. High-Throughput RNA Sequencing Analysis of Plasma Samples Reveals Circulating microRNA Signatures with Biomarker Potential in Dengue Disease Progression. mSystems 2020;5:e00724-20. [PMID: 32934118 DOI: 10.1128/mSystems.00724-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
32 Chow JT, Salmena L. Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium. Genes (Basel) 2020;11:E1002. [PMID: 32858958 DOI: 10.3390/genes11091002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 43] [Article Influence: 9.5] [Reference Citation Analysis]
33 Haddad H, Walid Al-Zyoud. miRNA target prediction might explain the reduced transmission of SARS-CoV-2 in Jordan, Middle East. Noncoding RNA Res 2020;5:135-43. [PMID: 32839745 DOI: 10.1016/j.ncrna.2020.08.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
34 Bartoszewski R, Dabrowski M, Jakiela B, Matalon S, Harrod KS, Sanak M, Collawn JF. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am J Physiol Lung Cell Mol Physiol 2020;319:L444-55. [PMID: 32755307 DOI: 10.1152/ajplung.00252.2020] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 14.5] [Reference Citation Analysis]
35 Chan AP, Choi Y, Schork NJ. Conserved Genomic Terminals of SARS-CoV-2 as Co-evolving Functional Elements and Potential Therapeutic Targets. bioRxiv 2020:2020. [PMID: 32676601 DOI: 10.1101/2020.07.06.190207] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
36 Fulzele S, Sahay B, Yusufu I, Lee TJ, Sharma A, Kolhe R, Isales CM. COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile. Aging Dis 2020;11:509-22. [PMID: 32489698 DOI: 10.14336/AD.2020.0428] [Cited by in Crossref: 43] [Cited by in F6Publishing: 65] [Article Influence: 21.5] [Reference Citation Analysis]
37 López P, Girardi E, Mounce BC, Weiss A, Chane-Woon-Ming B, Messmer M, Kaukinen P, Kopp A, Bortolamiol-Becet D, Fendri A, Vignuzzi M, Brino L, Pfeffer S. High-Throughput Fluorescence-Based Screen Identifies the Neuronal MicroRNA miR-124 as a Positive Regulator of Alphavirus Infection. J Virol 2020;94:e02145-19. [PMID: 32102877 DOI: 10.1128/JVI.02145-19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
38 Sharma S, Chatterjee A, Kumar P, Lal S, Kondabagil K. Upregulation of miR-101 during Influenza A Virus Infection Abrogates Viral Life Cycle by Targeting mTOR Pathway. Viruses 2020;12:E444. [PMID: 32326380 DOI: 10.3390/v12040444] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
39 Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD, Suciu N, Voinea SC. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front Cell Dev Biol. 2020;8:143. [PMID: 32211411 DOI: 10.3389/fcell.2020.00143] [Cited by in Crossref: 31] [Cited by in F6Publishing: 49] [Article Influence: 15.5] [Reference Citation Analysis]
40 Hu S, Li Z, Lan Y, Guan J, Zhao K, Chu D, Fan G, Guo Y, Gao F, He W. MiR-10a-5p-Mediated Syndecan 1 Suppression Restricts Porcine Hemagglutinating Encephalomyelitis Virus Replication. Front Microbiol 2020;11:105. [PMID: 32153518 DOI: 10.3389/fmicb.2020.00105] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
41 Gao F, Yang T, Liu X, Xiong F, Luo J, Yi Y, Fan J, Chen Z, Tan WS. MiRNA Targeted NP Genome of Live Attenuated Influenza Vaccines Provide Cross-Protection against a Lethal Influenza Virus Infection. Vaccines (Basel) 2020;8:E65. [PMID: 32028575 DOI: 10.3390/vaccines8010065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
42 Cui H, Zhang C, Zhao Z, Zhang C, Fu Y, Li J, Chen G, Lai M, Li Z, Dong S, Chen L, Li Z, Wang C, Liu J, Gao Y, Guo Z. Identification of cellular microRNA miR-188-3p with broad-spectrum anti-influenza A virus activity. Virol J 2020;17:12. [PMID: 32000791 DOI: 10.1186/s12985-020-1283-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
43 López P, Girardi E, Pfeffer S. [Importance of cellular microRNAs in the regulation of viral infections]. Med Sci (Paris) 2019;35:667-73. [PMID: 31532379 DOI: 10.1051/medsci/2019130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
44 Zou Z, Gong W, Huang K, Sun X, Jin M. Regulation of influenza virus infection by microRNAs. Journal of Integrative Agriculture 2019;18:1421-7. [DOI: 10.1016/s2095-3119(18)62134-3] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
45 Marques M, Ramos B, Soares AR, Ribeiro D. Cellular Proteostasis During Influenza A Virus Infection-Friend or Foe? Cells 2019;8:E228. [PMID: 30857287 DOI: 10.3390/cells8030228] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
46 Zhao L, Zhang X, Wu Z, Huang K, Sun X, Chen H, Jin M. The Downregulation of MicroRNA hsa-miR-340-5p in IAV-Infected A549 Cells Suppresses Viral Replication by Targeting RIG-I and OAS2. Mol Ther Nucleic Acids 2019;14:509-19. [PMID: 30753994 DOI: 10.1016/j.omtn.2018.12.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
47 Gao J, Gao L, Li R, Lai Z, Zhang Z, Fan X. Integrated analysis of microRNA-mRNA expression in A549 cells infected with influenza A viruses (IAVs) from different host species. Virus Res 2019;263:34-46. [PMID: 30605755 DOI: 10.1016/j.virusres.2018.12.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
48 Hou P, Wang H, Zhao G, Hu G, Xia X, He H. MiR-3470b promotes bovine ephemeral fever virus replication via directly targeting mitochondrial antiviral signaling protein (MAVS) in baby hamster Syrian kidney cells. BMC Microbiol 2018;18:224. [PMID: 30587113 DOI: 10.1186/s12866-018-1366-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
49 Girardi E, López P, Pfeffer S. On the Importance of Host MicroRNAs During Viral Infection. Front Genet 2018;9:439. [PMID: 30333857 DOI: 10.3389/fgene.2018.00439] [Cited by in Crossref: 77] [Cited by in F6Publishing: 92] [Article Influence: 19.3] [Reference Citation Analysis]
50 Feng S, Zeng D, Zheng J, Zhao D. MicroRNAs: Mediators and Therapeutic Targets to Airway Hyper Reactivity After Respiratory Syncytial Virus Infection. Front Microbiol 2018;9:2177. [PMID: 30254626 DOI: 10.3389/fmicb.2018.02177] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]