BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang LN, Yang C, Ouyang PR, Zhang ZC, Ran MZ, Tong L, Dong HL, Liu Y. Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain. Neuropeptides. 2016;58:7-14. [PMID: 26919917 DOI: 10.1016/j.npep.2016.02.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu C, Shi F, Fu B, Luo T, Zhang L, Zhang Y, Zhang Y, Yu S, Yu T. GABAA receptors in the basal forebrain mediates emergence from propofol anaesthesia in rats. Int J Neurosci 2020;:1-13. [PMID: 33174773 DOI: 10.1080/00207454.2020.1840375] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Li A, Li R, Ouyang P, Li H, Wang S, Zhang X, Wang D, Ran M, Zhao G, Yang Q, Zhu Z, Dong H, Zhang H. Dorsal raphe serotonergic neurons promote arousal from isoflurane anesthesia. CNS Neurosci Ther 2021;27:941-50. [PMID: 33973716 DOI: 10.1111/cns.13656] [Reference Citation Analysis]
3 Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021;37:934-46. [PMID: 33847915 DOI: 10.1007/s12264-021-00674-z] [Reference Citation Analysis]
4 Li J, Li H, Wang D, Guo Y, Zhang X, Ran M, Yang C, Yang Q, Dong H. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats. British Journal of Anaesthesia 2019;123:497-505. [DOI: 10.1016/j.bja.2019.07.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
5 Yang B, Ao Y, Liu Y, Zhang X, Li Y, Tang F, Xu H. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2021;46:1487-501. [PMID: 33710536 DOI: 10.1007/s11064-021-03291-4] [Reference Citation Analysis]
6 Vertes RP, Linley SB. No cognitive processing in the unconscious, anesthetic‐like , state of sleep. J Comp Neurol 2021;529:524-38. [DOI: 10.1002/cne.24963] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Reitz SL, Kelz MB. Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States. Front Neurosci 2021;15:644330. [PMID: 33642991 DOI: 10.3389/fnins.2021.644330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Cascella M, Bimonte S, Muzio MR. Towards a better understanding of anesthesia emergence mechanisms: Research and clinical implications. World J Methodol 2018; 8(2): 9-16 [PMID: 30345225 DOI: 10.5662/wjm.v8.i2.9] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Yang C, Zhang L, Hao H, Ran M, Li J, Dong H. Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats. Neuropeptides 2019;75:25-33. [DOI: 10.1016/j.npep.2019.03.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
11 Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021;132:1254-64. [PMID: 33857967 DOI: 10.1213/ANE.0000000000005361] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W. Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia. Front Mol Neurosci 2018;11:420. [PMID: 30564094 DOI: 10.3389/fnmol.2018.00420] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
13 Wang D, Guo Y, Li H, Li J, Ran M, Guo J, Yin L, Zhao S, Yang Q, Dong H. Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats. Br J Anaesth 2021;126:279-92. [PMID: 33131759 DOI: 10.1016/j.bja.2020.09.037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhao S, Wang S, Li H, Guo J, Li J, Wang D, Zhang X, Yin L, Li R, Li A, Li H, Fan Z, Yang Q, Zhong H, Dong H. Activation of Orexinergic Neurons Inhibits the Anesthetic Effect of Desflurane on Consciousness State via Paraventricular Thalamic Nucleus in Rats. Anesth Analg 2021;133:781-93. [PMID: 34403389 DOI: 10.1213/ANE.0000000000005651] [Reference Citation Analysis]
15 Pais-Roldán P, Edlow BL, Jiang Y, Stelzer J, Zou M, Yu X. Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury. Neuroimage 2019;189:615-30. [PMID: 30708105 DOI: 10.1016/j.neuroimage.2019.01.060] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
16 Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H. Optogenetic/Chemogenetic Activation of GABAergic Neurons in the Ventral Tegmental Area Facilitates General Anesthesia via Projections to the Lateral Hypothalamus in Mice. Front Neural Circuits 2019;13:73. [PMID: 31798420 DOI: 10.3389/fncir.2019.00073] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
17 Inutsuka A, Yamashita A, Chowdhury S, Nakai J, Ohkura M, Taguchi T, Yamanaka A. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci Rep 2016;6:29480. [PMID: 27385517 DOI: 10.1038/srep29480] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 10.3] [Reference Citation Analysis]
18 Kelz MB, García PS, Mashour GA, Solt K. Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019;128:726-36. [PMID: 30883418 DOI: 10.1213/ANE.0000000000004006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
19 Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021;15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.643871] [Reference Citation Analysis]