BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kessler BA, Stanley EM, Frederick-Duus D, Fadel J. Age-related loss of orexin/hypocretin neurons. Neuroscience 2011;178:82-8. [PMID: 21262323 DOI: 10.1016/j.neuroscience.2011.01.031] [Cited by in Crossref: 73] [Cited by in F6Publishing: 69] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Maldonado JR. Delirium pathophysiology: An updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry 2018;33:1428-57. [PMID: 29278283 DOI: 10.1002/gps.4823] [Cited by in Crossref: 131] [Cited by in F6Publishing: 115] [Article Influence: 26.2] [Reference Citation Analysis]
2 Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry. 2013;21:1190-1222. [PMID: 24206937 DOI: 10.1016/j.jagp.2013.09.005] [Cited by in Crossref: 307] [Cited by in F6Publishing: 234] [Article Influence: 38.4] [Reference Citation Analysis]
3 Wang W, Pan Y, Li Q, Wang L. Orexin: A potential role in the process of obstructive sleep apnea. Peptides 2013;42:48-54. [DOI: 10.1016/j.peptides.2013.01.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
4 Kotz CM, Perez-Leighton CE, Teske JA, Billington CJ. Spontaneous Physical Activity Defends Against Obesity. Curr Obes Rep 2017;6:362-70. [PMID: 29101738 DOI: 10.1007/s13679-017-0288-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
5 Soler JE, Xiong H, Samad F, Manfredsson FP, Robison AJ, Núñez AA, Yan L. Orexin (hypocretin) mediates light-dependent fluctuation of hippocampal function in a diurnal rodent. Hippocampus 2021. [PMID: 34263969 DOI: 10.1002/hipo.23376] [Reference Citation Analysis]
6 Najjar RP, Chiquet C, Teikari P, Cornut PL, Claustrat B, Denis P, Cooper HM, Gronfier C. Aging of non-visual spectral sensitivity to light in humans: compensatory mechanisms? PLoS One 2014;9:e85837. [PMID: 24465738 DOI: 10.1371/journal.pone.0085837] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 8.6] [Reference Citation Analysis]
7 Ashraf-Ganjouei A, Kheiri G, Masoudi M, Mohajer B, Mojtahed Zadeh M, Saberi P, Shirin Shandiz M, Aarabi MH. White Matter Tract Alterations in Drug-Naïve Parkinson's Disease Patients With Excessive Daytime Sleepiness. Front Neurol 2019;10:378. [PMID: 31057475 DOI: 10.3389/fneur.2019.00378] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
8 Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020;1731:145921. [PMID: 30148983 DOI: 10.1016/j.brainres.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
9 Ran M, Wang Z, Yang H, Zhang L, Li W, Yang Q, Dong H. Orexin-1 receptor is involved in ageing-related delayed emergence from general anaesthesia in rats. British Journal of Anaesthesia 2018;121:1097-104. [DOI: 10.1016/j.bja.2018.05.073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 345-63. [DOI: 10.1002/cphy.c190013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Stern AL, Naidoo N. Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease. Springerplus 2015;4:25. [PMID: 25635245 DOI: 10.1186/s40064-014-0777-6] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
12 Autio J, Stenbäck V, Gagnon DD, Leppäluoto J, Herzig KH. (Neuro) Peptides, Physical Activity, and Cognition. J Clin Med 2020;9:E2592. [PMID: 32785144 DOI: 10.3390/jcm9082592] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Carrier J, Semba K, Deurveilher S, Drogos L, Cyr-cronier J, Lord C, Sekerovick Z. Sex differences in age-related changes in the sleep-wake cycle. Frontiers in Neuroendocrinology 2017;47:66-85. [DOI: 10.1016/j.yfrne.2017.07.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
14 Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron 2017;94:19-36. [PMID: 28384471 DOI: 10.1016/j.neuron.2017.02.004] [Cited by in Crossref: 334] [Cited by in F6Publishing: 269] [Article Influence: 66.8] [Reference Citation Analysis]
15 Zhu Y, Fenik P, Zhan G, Xin R, Veasey SC. Degeneration in Arousal Neurons in Chronic Sleep Disruption Modeling Sleep Apnea. Front Neurol 2015;6:109. [PMID: 26074865 DOI: 10.3389/fneur.2015.00109] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
16 Brown SA, Schmitt K, Eckert A. Aging and circadian disruption: causes and effects. Aging (Albany NY) 2011;3:813-7. [PMID: 21869460 DOI: 10.18632/aging.100366] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.1] [Reference Citation Analysis]
17 Zanghi BM, Kerr W, de Rivera C, Araujo JA, Milgram NW. Effect of age and feeding schedule on diurnal rest/activity rhythms in dogs. Journal of Veterinary Behavior 2012;7:339-47. [DOI: 10.1016/j.jveb.2012.01.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Daneault V, Dumont M, Massé É, Vandewalle G, Carrier J. Light-sensitive brain pathways and aging. J Physiol Anthropol 2016;35:9. [PMID: 26980095 DOI: 10.1186/s40101-016-0091-9] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 6.5] [Reference Citation Analysis]
19 Calva CB, Fayyaz H, Fadel JR. Effects of Intranasal Orexin-A (Hypocretin-1) Administration on Neuronal Activation, Neurochemistry, and Attention in Aged Rats. Front Aging Neurosci 2019;11:362. [PMID: 32038222 DOI: 10.3389/fnagi.2019.00362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Kostin A, Alam MA, Siegel JM, McGinty D, Alam MN. Sex- and Age-dependent Differences in Sleep-wake Characteristics of Fisher-344 Rats. Neuroscience 2020;427:29-42. [PMID: 31846749 DOI: 10.1016/j.neuroscience.2019.11.046] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Obukuro K, Nobunaga M, Takigawa M, Morioka H, Hisatsune A, Isohama Y, Shimokawa H, Tsutsui M, Katsuki H. Nitric oxide mediates selective degeneration of hypothalamic orexin neurons through dysfunction of protein disulfide isomerase. J Neurosci 2013;33:12557-68. [PMID: 23904594 DOI: 10.1523/JNEUROSCI.0595-13.2013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
22 Wysokiński A, Sobów T, Kłoszewska I, Kostka T. Mechanisms of the anorexia of aging-a review. Age (Dordr) 2015;37:9821. [PMID: 26232135 DOI: 10.1007/s11357-015-9821-x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 67] [Article Influence: 12.4] [Reference Citation Analysis]
23 Fadel JR, Jolivalt CG, Reagan LP. Food for thought: the role of appetitive peptides in age-related cognitive decline. Ageing Res Rev 2013;12:764-76. [PMID: 23416469 DOI: 10.1016/j.arr.2013.01.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
24 Montesano A, Baumgart M, Avallone L, Castaldo L, Lucini C, Tozzini ET, Cellerino A, D'Angelo L, de Girolamo P. Age-related central regulation of orexin and NPY in the short-lived African killifish Nothobranchius furzeri. J Comp Neurol 2019;527:1508-26. [PMID: 30666646 DOI: 10.1002/cne.24638] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
25 Fulcher BD, Phillips AJ, Postnova S, Robinson PA. A physiologically based model of orexinergic stabilization of sleep and wake. PLoS One 2014;9:e91982. [PMID: 24651580 DOI: 10.1371/journal.pone.0091982] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
26 Schmidt FM, Kratzsch J, Gertz HJ, Tittmann M, Jahn I, Pietsch UC, Kaisers UX, Thiery J, Hegerl U, Schönknecht P. Cerebrospinal fluid melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) in Alzheimer's disease. PLoS One 2013;8:e63136. [PMID: 23667582 DOI: 10.1371/journal.pone.0063136] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
27 Zarifkar M, Noshad S, Shahriari M, Afarideh M, Khajeh E, Karimi Z, Ghajar A, Esteghamati A. Inverse Association of Peripheral Orexin-A with Insulin Resistance in Type 2 Diabetes Mellitus: A Randomized Clinical Trial. Rev Diabet Stud 2017;14:301-10. [PMID: 29145540 DOI: 10.1900/RDS.2017.14.301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
28 Yan A, Zhang L, Tang Z, Zhang Y, Qin C, Li B, Li W, Lin H. Orange-spotted grouper (Epinephelus coioides) orexin: Molecular cloning, tissue expression, ontogeny, daily rhythm and regulation of NPY gene expression. Peptides 2011;32:1363-70. [DOI: 10.1016/j.peptides.2011.05.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
29 Kostin A, Alam MA, Mcginty D, Szymusiak R, Alam MN. Chronic Suppression of Hypothalamic Cell Proliferation and Neurogenesis Induces Aging-Like Changes in Sleep–Wake Organization in Young Mice. Neuroscience 2019;404:541-56. [DOI: 10.1016/j.neuroscience.2019.01.053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Satoh A, Imai S. Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat Commun 2014;5:4211. [PMID: 24967620 DOI: 10.1038/ncomms5211] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
31 Adeghate E. Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. Vitam Horm. 2012;89:111-133. [PMID: 22640611 DOI: 10.1016/b978-0-12-394623-2.00007-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
32 Zhang D, Perrey DA, Decker AM, Langston TL, Mavanji V, Harris DL, Kotz CM, Zhang Y. Discovery of Arylsulfonamides as Dual Orexin Receptor Agonists. J Med Chem 2021;64:8806-25. [PMID: 34101446 DOI: 10.1021/acs.jmedchem.1c00841] [Reference Citation Analysis]
33 Xu T, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cellular Signalling 2013;25:2413-23. [DOI: 10.1016/j.cellsig.2013.07.025] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 7.6] [Reference Citation Analysis]
34 Seigneur E, de Lecea L. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery 2020;8:100070. [DOI: 10.1016/j.medidd.2020.100070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zegarra‐valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez‐rachadell L, Nuñez A, Torres Aleman I. Insulin‐like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB j 2020;34:15975-90. [DOI: 10.1096/fj.202001281rr] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
36 Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2020;1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
37 Zink AN, Perez-Leighton CE, Kotz CM. The orexin neuropeptide system: physical activity and hypothalamic function throughout the aging process. Front Syst Neurosci 2014;8:211. [PMID: 25408639 DOI: 10.3389/fnsys.2014.00211] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
38 Liu C, Xue Y, Liu MF, Wang Y, Chen L. Orexin and Parkinson's disease: A protective neuropeptide with therapeutic potential. Neurochem Int 2020;138:104754. [PMID: 32422324 DOI: 10.1016/j.neuint.2020.104754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Schmidt C, Peigneux P, Cajochen C. Age-related changes in sleep and circadian rhythms: impact on cognitive performance and underlying neuroanatomical networks. Front Neurol 2012;3:118. [PMID: 22855682 DOI: 10.3389/fneur.2012.00118] [Cited by in Crossref: 70] [Cited by in F6Publishing: 58] [Article Influence: 7.0] [Reference Citation Analysis]
40 Berhe DF, Gebre AK, Assefa BT. Orexins role in neurodegenerative diseases: From pathogenesis to treatment. Pharmacol Biochem Behav 2020;194:172929. [PMID: 32315694 DOI: 10.1016/j.pbb.2020.172929] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
41 John J, Thannickal TC, McGregor R, Ramanathan L, Ohtsu H, Nishino S, Sakai N, Yamanaka A, Stone C, Cornford M, Siegel JM. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann Neurol 2013;74:786-93. [PMID: 23821583 DOI: 10.1002/ana.23968] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 7.7] [Reference Citation Analysis]
42 Stanojlovic M, Pallais Yllescas JP Jr, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019;316:R571-83. [PMID: 30726119 DOI: 10.1152/ajpregu.00383.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
43 Calva CB, Fayyaz H, Fadel JR. Increased acetylcholine and glutamate efflux in the prefrontal cortex following intranasal orexin-A (hypocretin-1). J Neurochem 2018;145:232-44. [PMID: 29250792 DOI: 10.1111/jnc.14279] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
44 Katsuki H, Michinaga S. Anti-Parkinson drugs and orexin neurons. Vitam Horm 2012;89:279-90. [PMID: 22640619 DOI: 10.1016/B978-0-12-394623-2.00015-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
45 Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018;526:2937-54. [PMID: 30019757 DOI: 10.1002/cne.24490] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
46 Wang ZH, Ni XL, Li JN, Xiao ZY, Wang C, Zhang LN, Tong L, Dong HL. Changes in plasma orexin-A levels in sevoflurane-remifentanil anesthesia in young and elderly patients undergoing elective lumbar surgery. Anesth Analg. 2014;118:818-822. [PMID: 24651236 DOI: 10.1213/ane.0000000000000109] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
47 Guarnieri B, Musicco M, Caffarra P, Adorni F, Appollonio I, Arnaldi D, Bartoli A, Bonanni E, Bonuccelli U, Caltagirone C, Cerroni G, Concari L, Cosentino FI, Fermi S, Ferri R, Gelosa G, Lombardi G, Mearelli S, Nobili F, Passero S, Perri R, Rocchi R, Sucapane P, Tognoni G, Zabberoni S, Sorbi S. Recommendations of the Sleep Study Group of the Italian Dementia Research Association (SINDem) on clinical assessment and management of sleep disorders in individuals with mild cognitive impairment and dementia: a clinical review. Neurol Sci 2014;35:1329-48. [PMID: 25037740 DOI: 10.1007/s10072-014-1873-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
48 Markovic SJ, Fitzgerald M, Peiffer JJ, Scott BR, Rainey-Smith SR, Sohrabi HR, Brown BM. The impact of exercise, sleep, and diet on neurocognitive recovery from mild traumatic brain injury in older adults: A narrative review. Ageing Res Rev 2021;68:101322. [PMID: 33737117 DOI: 10.1016/j.arr.2021.101322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Hunt NJ, Rodriguez ML, Waters KA, Machaalani R. Changes in orexin (hypocretin) neuronal expression with normal aging in the human hypothalamus. Neurobiology of Aging 2015;36:292-300. [DOI: 10.1016/j.neurobiolaging.2014.08.010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 7.0] [Reference Citation Analysis]
50 Vaz RP, Pereira PA, Madeira MD. Age effects on the nucleus of the lateral olfactory tract of the rat: Aging of the nLOT. J Comp Neurol 2016;524:759-71. [DOI: 10.1002/cne.23863] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
51 Hagar JM, Macht VA, Wilson SP, Fadel JR. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex. Neuroscience 2017;350:124-32. [PMID: 28344067 DOI: 10.1016/j.neuroscience.2017.03.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
52 Um YH, Lim HK. Orexin and Alzheimer's Disease: A New Perspective. Psychiatry Investig 2020;17:621-6. [PMID: 32517419 DOI: 10.30773/pi.2020.0136] [Reference Citation Analysis]
53 Collier AD, Yasmin N, Khalizova N, Campbell S, Onoichenco A, Fam M, Albeg AS, Leibowitz SF. Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Sci Rep 2021;11:16078. [PMID: 34373563 DOI: 10.1038/s41598-021-95707-y] [Reference Citation Analysis]
54 Naidoo N, Zhu J, Galante RJ, Lian J, Strus E, Lee A, Keenan BT, Pack AI. Reduction of the molecular chaperone binding immunoglobulin protein (BiP) accentuates the effect of aging on sleep-wake behavior. Neurobiol Aging 2018;69:10-25. [PMID: 29843048 DOI: 10.1016/j.neurobiolaging.2018.04.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
55 Piantadosi PT, Holmes A, Roberts BM, Bailey AM. Orexin receptor activity in the basal forebrain alters performance on an olfactory discrimination task. Brain Res 2015;1594:215-22. [PMID: 25451124 DOI: 10.1016/j.brainres.2014.10.041] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
56 Zlebnik NE, Holtz NA, Lepak VC, Saykao AT, Zhang Y, Carroll ME. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend 2021;224:108719. [PMID: 33940327 DOI: 10.1016/j.drugalcdep.2021.108719] [Reference Citation Analysis]
57 Zhu Y, Fenik P, Zhan G, Xin R, Veasey SC. Degeneration in Arousal Neurons in Chronic Sleep Disruption Modeling Sleep Apnea. Front Neurol 2015;6:109. [PMID: 26074865 DOI: 10.3389/fneur.2015.00109] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021;44:zsaa173. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Rolls A. Hypothalamic Control of Sleep in Aging. Neuromol Med 2012;14:139-53. [DOI: 10.1007/s12017-012-8175-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
60 Stanley EM, Fadel JR. Aging-related alterations in orexin/hypocretin modulation of septo-hippocampal amino acid neurotransmission. Neuroscience 2011;195:70-9. [PMID: 21884758 DOI: 10.1016/j.neuroscience.2011.08.033] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
61 Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015;20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
62 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
63 Smiley JF, Bleiwas C, Canals-Baker S, Williams SZ, Sears R, Teixeira CM, Wilson DA, Saito M. Neonatal ethanol causes profound reduction of cholinergic cell number in the basal forebrain of adult animals. Alcohol 2021;97:1-11. [PMID: 34464696 DOI: 10.1016/j.alcohol.2021.08.005] [Reference Citation Analysis]
64 Sellayah D, Sikder D. Orexin restores aging-related brown adipose tissue dysfunction in male mice. Endocrinology 2014;155:485-501. [PMID: 24248466 DOI: 10.1210/en.2013-1629] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 6.7] [Reference Citation Analysis]
65 Kuwahara M, Ito K, Hayakawa K, Yagi S, Shiota K. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function. Auton Neurosci 2015;187:56-62. [PMID: 25443216 DOI: 10.1016/j.autneu.2014.11.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
66 Hayakawa K, Sakamoto Y, Kanie O, Ohtake A, Daikoku S, Ito Y, Shiota K. Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells. Epigenetics 2017;12:764-78. [PMID: 28762874 DOI: 10.1080/15592294.2017.1346775] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
67 Shader RI. Some Reflections on Sleep and its Treatment. Clinical Therapeutics 2016;38:2325-8. [DOI: 10.1016/j.clinthera.2016.10.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
68 Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021;234:113370. [PMID: 33621561 DOI: 10.1016/j.physbeh.2021.113370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
69 Zhong H, Yu B, Luo D, Yang L, Zhang J, Jiang S, Hu S, Luo Y, Yang M, Hong F, Yang S. Roles of aging in sleep. Neuroscience & Biobehavioral Reviews 2019;98:177-84. [DOI: 10.1016/j.neubiorev.2019.01.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
70 Mele M, Avolio E, Alò R, Fazzari G, Mahata S, Canonaco M. Catestatin and orexin-A neuronal signals alter feeding habits in relation to hibernating states. Neuroscience 2014;269:331-42. [DOI: 10.1016/j.neuroscience.2014.03.065] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
71 Armbruszt S, Figler M, Ábrahám H. Stability of CART peptide expression in the nucleus accumbens in aging. Acta Biol Hung 2015;66:1-13. [PMID: 25740434 DOI: 10.1556/ABiol.66.2015.1.1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]