BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kohlmeier KA, Kristiansen U. GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state. Neuroscience 2010;171:812-29. [PMID: 20884335 DOI: 10.1016/j.neuroscience.2010.09.034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
Number Citing Articles
1 Luquin E, Paternain B, Zugasti I, Santomá C, Mengual E. Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Struct Funct 2021. [PMID: 34510281 DOI: 10.1007/s00429-021-02375-9] [Reference Citation Analysis]
2 Eliasen JN, Krall J, Frølund B, Kohlmeier KA. Sex-specific alterations in GABA receptor-mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine. Dev Neurobiol 2020;80:178-99. [PMID: 32628361 DOI: 10.1002/dneu.22772] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Coimbra B, Soares-Cunha C, Vasconcelos NAP, Domingues AV, Borges S, Sousa N, Rodrigues AJ. Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors. Nat Commun 2019;10:4138. [PMID: 31515512 DOI: 10.1038/s41467-019-11557-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
4 Shi G, Xing L, Wu D, Bhattacharyya BJ, Jones CR, McMahon T, Chong SYC, Chen JA, Coppola G, Geschwind D, Krystal A, Ptáček LJ, Fu YH. A Rare Mutation of β1-Adrenergic Receptor Affects Sleep/Wake Behaviors. Neuron 2019;103:1044-1055.e7. [PMID: 31473062 DOI: 10.1016/j.neuron.2019.07.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
5 Steidl S, Wasserman DI, Blaha CD, Yeomans JS. Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neurosci Biobehav Rev 2017;83:72-82. [PMID: 28951251 DOI: 10.1016/j.neubiorev.2017.09.022] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
6 Christensen MH, Kohlmeier KA. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction. Addict Biol 2016;21:267-81. [PMID: 25363563 DOI: 10.1111/adb.12194] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
7 Soni N, Satpathy S, Kohlmeier KA. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus. Eur J Neurosci 2014;40:3635-52. [PMID: 25251035 DOI: 10.1111/ejn.12730] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
8 Smith CM, Chua BE, Zhang C, Walker AW, Haidar M, Hawkes D, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Gundlach AL. Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice. Behav Brain Res 2014;268:117-26. [PMID: 24681162 DOI: 10.1016/j.bbr.2014.03.037] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
9 Steidl S, Lee E, Wasserman D, Yeomans JS. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice. Behavioural Brain Research 2013;252:176-9. [DOI: 10.1016/j.bbr.2013.05.053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
10 Kohlmeier KA. Off the beaten path: drug addiction and the pontine laterodorsal tegmentum. ISRN Neurosci 2013;2013:604847. [PMID: 24959564 DOI: 10.1155/2013/604847] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
11 Kohlmeier KA, Vardar B, Christensen MH. γ-Hydroxybutyric acid induces actions via the GABAB receptor in arousal and motor control-related nuclei: implications for therapeutic actions in behavioral state disorders. Neuroscience 2013;248:261-77. [PMID: 23791974 DOI: 10.1016/j.neuroscience.2013.06.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
12 Kohlmeier KA, Christensen MH, Kristensen MP, Kristiansen U. Pharmacological evidence of functional inhibitory metabotrophic glutamate receptors on mouse arousal-related cholinergic laterodorsal tegmental neurons. Neuropharmacology 2013;66:99-113. [PMID: 22381584 DOI: 10.1016/j.neuropharm.2012.02.016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
13 Krechowec SO, Burton KL, Newlaczyl AU, Nunn N, Vlatković N, Plagge A. Postnatal changes in the expression pattern of the imprinted signalling protein XLαs underlie the changing phenotype of deficient mice. PLoS One 2012;7:e29753. [PMID: 22253771 DOI: 10.1371/journal.pone.0029753] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
14 Steidl S, Miller AD, Blaha CD, Yeomans JS. M₅ muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS One 2011;6:e27538. [PMID: 22102904 DOI: 10.1371/journal.pone.0027538] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 3.5] [Reference Citation Analysis]
15 Brudzynski SM, Iku A, Harness (neé Savoy) A. Activity of cholinergic neurons in the laterodorsal tegmental nucleus during emission of 22kHz vocalization in rats. Behavioural Brain Research 2011;225:276-83. [DOI: 10.1016/j.bbr.2011.07.040] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
16 Vanini G, Wathen BL, Lydic R, Baghdoyan HA. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J Neurosci 2011;31:2649-56. [PMID: 21325533 DOI: 10.1523/JNEUROSCI.5674-10.2011] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]