BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rai S, Kumar S, Alam MA, Szymusiak R, McGinty D, Alam MN. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience 2010;167:40-8. [PMID: 20109537 DOI: 10.1016/j.neuroscience.2010.01.044] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Holst SC, Landolt H. Sleep Homeostasis, Metabolism, and Adenosine. Curr Sleep Medicine Rep 2015;1:27-37. [DOI: 10.1007/s40675-014-0007-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 10] [Article Influence: 4.1] [Reference Citation Analysis]
2 Cun Y, Tang L, Yan J, He C, Li Y, Hu Z, Xia J. Orexin A attenuates the sleep-promoting effect of adenosine in the lateral hypothalamus of rats. Neurosci Bull 2014;30:877-86. [PMID: 24898402 DOI: 10.1007/s12264-013-1442-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
3 Sil’kis IG. A Neurochemical Approach to the Search for Drugs for the Treatment of Symptoms of Alzheimer’s Disease. Neurochem J 2018;12:15-22. [DOI: 10.1134/s1819712418010130] [Reference Citation Analysis]
4 Alam MN, McGinty D. Acute effects of alcohol on sleep are mediated by components of homeostatic sleep regulatory system: An Editorial Highlight for 'Lesions of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption' on page 710. J Neurochem 2017;142:620-3. [PMID: 28736837 DOI: 10.1111/jnc.14100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
5 Kumar S, Rai S, Hsieh KC, McGinty D, Alam MN, Szymusiak R. Adenosine A(2A) receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus. Am J Physiol Regul Integr Comp Physiol 2013;305:R31-41. [PMID: 23637137 DOI: 10.1152/ajpregu.00402.2012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
6 Sharma R, Sahota P, Thakkar MM. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. Sleep 2014;37:525-33. [PMID: 24587575 DOI: 10.5665/sleep.3490] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
7 Okumura T, Nozu T, Kumei S, Takakusaki K, Miyagishi S, Ohhira M. Adenosine A1 receptors mediate the intracisternal injection of orexin-induced antinociceptive action against colonic distension in conscious rats. Journal of the Neurological Sciences 2016;362:106-10. [DOI: 10.1016/j.jns.2016.01.031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
8 Lim MM, Szymusiak R. Neurobiology of Arousal and Sleep: Updates and Insights Into Neurological Disorders. Curr Sleep Medicine Rep 2015;1:91-100. [DOI: 10.1007/s40675-015-0013-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
9 Rihel J, Schier AF. Sites of action of sleep and wake drugs: insights from model organisms. Curr Opin Neurobiol 2013;23:831-40. [PMID: 23706898 DOI: 10.1016/j.conb.2013.04.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
10 Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011;95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Cited by in Crossref: 276] [Cited by in F6Publishing: 273] [Article Influence: 25.1] [Reference Citation Analysis]
11 de Andrés I, Garzón M, Reinoso-Suárez F. Functional Anatomy of Non-REM Sleep. Front Neurol 2011;2:70. [PMID: 22110467 DOI: 10.3389/fneur.2011.00070] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
12 Chen XT, Wang XG, Xie LY, Huang JW, Zhao W, Wang Q, Yao LM, Li WR. Effects of Xingnaojing Injection on Adenosinergic Transmission and Orexin Signaling in Lateral Hypothalamus of Ethanol-Induced Coma Rats. Biomed Res Int 2019;2019:2389485. [PMID: 31346513 DOI: 10.1155/2019/2389485] [Reference Citation Analysis]
13 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
14 Kostin A, Mcginty D, Szymusiak R, Alam M. Mechanisms mediating effects of nitric oxide on perifornical lateral hypothalamic neurons. Neuroscience 2012;220:179-90. [DOI: 10.1016/j.neuroscience.2012.06.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
15 Gvilia I, Suntsova N, Kostin A, Kalinchuk A, McGinty D, Basheer R, Szymusiak R. The role of adenosine in the maturation of sleep homeostasis in rats. J Neurophysiol 2017;117:327-35. [PMID: 27784808 DOI: 10.1152/jn.00675.2016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
16 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
17 Wang YQ, Zhang MQ, Li R, Qu WM, Huang ZL. The Mutual Interaction Between Sleep and Epilepsy on the Neurobiological Basis and Therapy. Curr Neuropharmacol 2018;16:5-16. [PMID: 28486925 DOI: 10.2174/1570159X15666170509101237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Komagata N, Latifi B, Rusterholz T, Bassetti CLA, Adamantidis A, Schmidt MH. Dynamic REM Sleep Modulation by Ambient Temperature and the Critical Role of the Melanin-Concentrating Hormone System. Curr Biol 2019;29:1976-1987.e4. [PMID: 31155350 DOI: 10.1016/j.cub.2019.05.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
19 Wright KP, Lowry CA, Lebourgeois MK. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 2012;5:50. [PMID: 22529774 DOI: 10.3389/fnmol.2012.00050] [Cited by in Crossref: 82] [Cited by in F6Publishing: 84] [Article Influence: 8.2] [Reference Citation Analysis]
20 Kostin A, Rai S, Kumar S, Szymusiak R, McGinty D, Alam MN. Nitric oxide production in the perifornical-lateral hypothalamic area and its influences on the modulation of perifornical-lateral hypothalamic area neurons. Neuroscience 2011;179:159-69. [PMID: 21277356 DOI: 10.1016/j.neuroscience.2011.01.052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
21 Deboer T, van Diepen HC, Ferrari MD, Van den Maagdenberg AM, Meijer JH. Reduced sleep and low adenosinergic sensitivity in cacna1a R192Q mutant mice. Sleep 2013;36:127-36. [PMID: 23288979 DOI: 10.5665/sleep.2316] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
22 Huang ZL, Zhang Z, Qu WM. Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol 2014;119:349-71. [PMID: 25175972 DOI: 10.1016/B978-0-12-801022-8.00014-3] [Cited by in Crossref: 64] [Cited by in F6Publishing: 33] [Article Influence: 9.1] [Reference Citation Analysis]
23 Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014;37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
24 Eikermann M, Vetrivelan R, Grosse-Sundrup M, Henry ME, Hoffmann U, Yokota S, Saper CB, Chamberlin NL. The ventrolateral preoptic nucleus is not required for isoflurane general anesthesia. Brain Res 2011;1426:30-7. [PMID: 22041226 DOI: 10.1016/j.brainres.2011.10.018] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]