BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Prud'homme MJ, Lacroix MC, Badonnel K, Gougis S, Baly C, Salesse R, Caillol M. Nutritional status modulates behavioural and olfactory bulb Fos responses to isoamyl acetate or food odour in rats: roles of orexins and leptin. Neuroscience 2009;162:1287-98. [PMID: 19477242 DOI: 10.1016/j.neuroscience.2009.05.043] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020;1731:145921. [PMID: 30148983 DOI: 10.1016/j.brainres.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
2 Poivet E, Gallot A, Montagné N, Senin P, Monsempès C, Legeai F, Jacquin-Joly E. Transcriptome Profiling of Starvation in the Peripheral Chemosensory Organs of the Crop Pest Spodoptera littoralis Caterpillars. Insects 2021;12:573. [PMID: 34201462 DOI: 10.3390/insects12070573] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhou Y, Wang X, Cao T, Xu J, Wang D, Restrepo D, Li A. Insulin Modulates Neural Activity of Pyramidal Neurons in the Anterior Piriform Cortex. Front Cell Neurosci 2017;11:378. [PMID: 29234275 DOI: 10.3389/fncel.2017.00378] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
4 Chelminski Y, Magnan C, Luquet SH, Everard A, Meunier N, Gurden H, Martin C. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice. Front Physiol 2017;8:2. [PMID: 28154537 DOI: 10.3389/fphys.2017.00002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
5 Merle L, Person O, Bonnet P, Grégoire S, Soubeyre V, Grosmaitre X, Jarriault D. Maternal high fat high sugar diet disrupts olfactory behavior but not mucosa sensitivity in the offspring. Psychoneuroendocrinology 2019;104:249-58. [PMID: 30904822 DOI: 10.1016/j.psyneuen.2019.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Schneider NY, Piccin C, Datiche F, Coureaud G. Spontaneous brain processing of the mammary pheromone in rabbit neonates prior to milk intake. Behav Brain Res 2016;313:191-200. [PMID: 27418440 DOI: 10.1016/j.bbr.2016.07.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
7 Rodrigues L, Espanca R, Costa AR, Antunes CM, Pomar C, Capela-Silva F, Pinheiro CC, Amado F, Lamy E. Association between Salivary Leptin Levels and Taste Perception in Children. J Nutr Metab 2017;2017:7260169. [PMID: 28811937 DOI: 10.1155/2017/7260169] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
8 Gatfield J, Brisbare-Roch C, Jenck F, Boss C. Orexin receptor antagonists: a new concept in CNS disorders? ChemMedChem 2010;5:1197-214. [PMID: 20544785 DOI: 10.1002/cmdc.201000132] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 5.0] [Reference Citation Analysis]
9 Tong J, Mannea E, Aimé P, Pfluger PT, Yi CX, Castaneda TR, Davis HW, Ren X, Pixley S, Benoit S. Ghrelin enhances olfactory sensitivity and exploratory sniffing in rodents and humans. J Neurosci. 2011;31:5841-5846. [PMID: 21490225 DOI: 10.1523/JNEUROSCI.5680-10.2011] [Cited by in Crossref: 97] [Cited by in F6Publishing: 52] [Article Influence: 8.8] [Reference Citation Analysis]
10 Shanahan LK, Bhutani S, Kahnt T. Olfactory perceptual decision-making is biased by motivational state. PLoS Biol 2021;19:e3001374. [PMID: 34437533 DOI: 10.1371/journal.pbio.3001374] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Thiebaud N, Johnson MC, Butler JL, Bell GA, Ferguson KL, Fadool AR, Fadool JC, Gale AM, Gale DS, Fadool DA. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J Neurosci 2014;34:6970-84. [PMID: 24828650 DOI: 10.1523/JNEUROSCI.3366-13.2014] [Cited by in Crossref: 85] [Cited by in F6Publishing: 47] [Article Influence: 10.6] [Reference Citation Analysis]
12 Guzmán-Ruiz MA, Jiménez A, Cárdenas-Rivera A, Guerrero-Vargas NN, Organista-Juárez D, Guevara-Guzmán R. Regulation of Metabolic Health by an "Olfactory-Hypothalamic Axis" and Its Possible Implications for the Development of Therapeutic Approaches for Obesity and T2D. Cell Mol Neurobiol 2021. [PMID: 33813677 DOI: 10.1007/s10571-021-01080-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Faour M, Magnan C, Gurden H, Martin C. Olfaction in the context of obesity and diabetes: Insights from animal models to humans. Neuropharmacology 2021;206:108923. [PMID: 34919903 DOI: 10.1016/j.neuropharm.2021.108923] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
14 Harris G, Korchnak A, Summers P, Hapiak V, Law WJ, Stein AM, Komuniecki P, Komuniecki R. Dissecting the serotonergic food signal stimulating sensory-mediated aversive behavior in C. elegans. PLoS One 2011;6:e21897. [PMID: 21814562 DOI: 10.1371/journal.pone.0021897] [Cited by in Crossref: 26] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
15 Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021;15:662184. [PMID: 34239417 DOI: 10.3389/fncel.2021.662184] [Reference Citation Analysis]
16 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
17 Wu J, Liu P, Chen F, Ge L, Lu Y, Li A. Excitability of Neural Activity is Enhanced, but Neural Discrimination of Odors is Slightly Decreased, in the Olfactory Bulb of Fasted Mice. Genes (Basel) 2020;11:E433. [PMID: 32316323 DOI: 10.3390/genes11040433] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 Ginieis R, Abeywickrema S, Oey I, Peng M. Testing Links of Food-Related Olfactory Perception to Peripheral Ghrelin and Leptin Concentrations. Front Nutr 2022;9:888608. [DOI: 10.3389/fnut.2022.888608] [Reference Citation Analysis]
19 Kaniganti T, Deogade A, Maduskar A, Mukherjee A, Guru A, Subhedar N, Ghose A. Sensitivity of olfactory sensory neurons to food cues is tuned to nutritional states by Neuropeptide Y signaling. J Neurochem 2021. [PMID: 34359098 DOI: 10.1111/jnc.15488] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. Biol Bull 2020;239:189-208. [PMID: 33347799 DOI: 10.1086/711293] [Reference Citation Analysis]
21 Negroni J, Meunier N, Monnerie R, Salesse R, Baly C, Caillol M, Congar P. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats. PLoS One 2012;7:e45266. [PMID: 23024812 DOI: 10.1371/journal.pone.0045266] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
22 Ratcliff M, Rees D, Mcgrady S, Buntwal L, Hornsby AKE, Bayliss J, Kent BA, Bussey T, Saksida L, Beynon AL, Howell OW, Morgan AH, Sun Y, Andrews ZB, Wells T, Davies JS. Calorie restriction activates new adult born olfactory‐bulb neurones in a ghrelin‐dependent manner but acyl‐ghrelin does not enhance subventricular zone neurogenesis. J Neuroendocrinol 2019;31. [DOI: 10.1111/jne.12755] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
23 Palouzier-Paulignan B, Lacroix MC, Aimé P, Baly C, Caillol M, Congar P, Julliard AK, Tucker K, Fadool DA. Olfaction under metabolic influences. Chem Senses 2012;37:769-97. [PMID: 22832483 DOI: 10.1093/chemse/bjs059] [Cited by in Crossref: 183] [Cited by in F6Publishing: 170] [Article Influence: 18.3] [Reference Citation Analysis]
24 Bhutani S, Howard JD, Reynolds R, Zee PC, Gottfried J, Kahnt T. Olfactory connectivity mediates sleep-dependent food choices in humans. Elife 2019;8:e49053. [PMID: 31591965 DOI: 10.7554/eLife.49053] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
25 Samerphob N, Issuriya A, Cheaha D, Chatpun S, Jensen O, Kumarnsit E. Beta and gamma synchronous oscillations in neural network activity in mice-induced by food deprivation. Neurosci Lett 2019;709:134398. [PMID: 31344399 DOI: 10.1016/j.neulet.2019.134398] [Reference Citation Analysis]
26 Fadool DA, Tucker K, Pedarzani P. Mitral cells of the olfactory bulb perform metabolic sensing and are disrupted by obesity at the level of the Kv1.3 ion channel. PLoS One 2011;6:e24921. [PMID: 21966386 DOI: 10.1371/journal.pone.0024921] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 5.0] [Reference Citation Analysis]
27 Aimé P, Hegoburu C, Jaillard T, Degletagne C, Garcia S, Messaoudi B, Thevenet M, Lorsignol A, Duchamp C, Mouly AM, Julliard AK. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats. PLoS One 2012;7:e51227. [PMID: 23251461 DOI: 10.1371/journal.pone.0051227] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
28 Jung JW, Kim JH, Pfeiffer R, Ahn YJ, Page TL, Kwon HW. Neuromodulation of olfactory sensitivity in the peripheral olfactory organs of the American cockroach, Periplaneta americana. PLoS One 2013;8:e81361. [PMID: 24244739 DOI: 10.1371/journal.pone.0081361] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
29 Padilla SL, Reef D, Zeltser LM. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations. Endocrinology 2012;153:1219-31. [PMID: 22166984 DOI: 10.1210/en.2011-1665] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 7.1] [Reference Citation Analysis]
30 Badonnel K, Lacroix M, Durieux D, Monnerie R, Caillol M, Baly C. Rat strains with different metabolic statuses differ in food olfactory-driven behavior. Behavioural Brain Research 2014;270:228-39. [DOI: 10.1016/j.bbr.2014.05.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
31 Manella L, Woldeyohannes L, Mcmahon D, Linster C. Effects of experimentally necessary changes in husbandry on olfactory memory: Chronic food restriction and social isolation. Physiology & Behavior 2016;155:38-45. [DOI: 10.1016/j.physbeh.2015.12.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
32 Aimé P, Palouzier-Paulignan B, Salem R, Al Koborssy D, Garcia S, Duchamp C, Romestaing C, Julliard AK. Modulation of olfactory sensitivity and glucose-sensing by the feeding state in obese Zucker rats. Front Behav Neurosci 2014;8:326. [PMID: 25278856 DOI: 10.3389/fnbeh.2014.00326] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
33 Sun X, Veldhuizen MG, Babbs AE, Sinha R, Small DM. Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chem Senses 2016;41:233-48. [PMID: 26826114 DOI: 10.1093/chemse/bjv081] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
34 Badonnel K, Lacroix MC, Monnerie R, Durieux D, Caillol M, Baly C. Chronic restricted access to food leading to undernutrition affects rat neuroendocrine status and olfactory-driven behaviors. Horm Behav 2012;62:120-7. [PMID: 22633909 DOI: 10.1016/j.yhbeh.2012.05.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
35 Caba M, Pabello M, Moreno ML, Meza E. Main and accessory olfactory bulbs and their projections in the brain anticipate feeding in food-entrained rats. Chronobiol Int 2014;31:869-77. [PMID: 24915133 DOI: 10.3109/07420528.2014.918625] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
36 Soria-Gomez E, Bellocchio L, Marsicano G. New insights on food intake control by olfactory processes: the emerging role of the endocannabinoid system. Mol Cell Endocrinol 2014;397:59-66. [PMID: 25261796 DOI: 10.1016/j.mce.2014.09.023] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
37 Thiebaud N, Llewellyn-Smith IJ, Gribble F, Reimann F, Trapp S, Fadool DA. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel. J Physiol 2016;594:2607-28. [PMID: 26931093 DOI: 10.1113/JP272322] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
38 Charra R, Datiche F, Casthano A, Gigot V, Schaal B, Coureaud G. Brain processing of the mammary pheromone in newborn rabbits. Behav Brain Res 2012;226:179-88. [PMID: 21925546 DOI: 10.1016/j.bbr.2011.09.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
39 Julliard AK, Al Koborssy D, Fadool DA, Palouzier-Paulignan B. Nutrient Sensing: Another Chemosensitivity of the Olfactory System. Front Physiol 2017;8:468. [PMID: 28747887 DOI: 10.3389/fphys.2017.00468] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
40 Nogi Y, Ahasan MM, Murata Y, Taniguchi M, Sha MFR, Ijichi C, Yamaguchi M. Expression of feeding-related neuromodulatory signalling molecules in the mouse central olfactory system. Sci Rep 2020;10:890. [PMID: 31964903 DOI: 10.1038/s41598-020-57605-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2020;1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
42 Micarelli A, Mrakic-Sposta S, Micarelli B, Malacrida S, Misici I, Carbini V, Iennaco I, Caputo S, Vezzoli A, Alessandrini M. Smell Impairment in Stage I-II Obesity: Correlation with Biochemical Regulators and Clinical Aspects. Laryngoscope 2022. [PMID: 35906890 DOI: 10.1002/lary.30325] [Reference Citation Analysis]
43 Burgess CR, Livneh Y, Ramesh RN, Andermann ML. Gating of visual processing by physiological need. Curr Opin Neurobiol 2018;49:16-23. [PMID: 29125986 DOI: 10.1016/j.conb.2017.10.020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
44 Nagashima A, Touhara K. Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. J Neurosci 2010;30:16391-8. [PMID: 21123585 DOI: 10.1523/JNEUROSCI.2527-10.2010] [Cited by in Crossref: 84] [Cited by in F6Publishing: 35] [Article Influence: 7.6] [Reference Citation Analysis]
45 Jovanovic P, Riera CE. Olfactory system and energy metabolism: a two-way street. Trends Endocrinol Metab 2022;33:281-91. [PMID: 35177346 DOI: 10.1016/j.tem.2022.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Sun C, Tang K, Wu J, Xu H, Zhang W, Cao T, Zhou Y, Yu T, Li A. Leptin modulates olfactory discrimination and neural activity in the olfactory bulb. Acta Physiol (Oxf) 2019;227:e13319. [PMID: 31144469 DOI: 10.1111/apha.13319] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
47 Tucker KR, Godbey SJ, Thiebaud N, Fadool DA. Olfactory ability and object memory in three mouse models of varying body weight, metabolic hormones, and adiposity. Physiol Behav 2012;107:424-32. [PMID: 22995978 DOI: 10.1016/j.physbeh.2012.09.007] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
48 Ramaekers MG, Verhoef A, Gort G, Luning PA, Boesveldt S. Metabolic and Sensory Influences on Odor Sensitivity in Humans. Chem Senses 2016;41:163-8. [PMID: 26567260 DOI: 10.1093/chemse/bjv068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
49 Tucker K, Overton JM, Fadool DA. Diet-induced obesity resistance of Kv1.3-/- mice is olfactory bulb dependent. J Neuroendocrinol 2012;24:1087-95. [PMID: 22435906 DOI: 10.1111/j.1365-2826.2012.02314.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
50 Jacobson A, Green E, Haase L, Szajer J, Murphy C. Differential Effects of BMI on Brain Response to Odor in Olfactory, Reward and Memory Regions: Evidence from fMRI. Nutrients 2019;11:E926. [PMID: 31022978 DOI: 10.3390/nu11040926] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
51 Boone MH, Liang-Guallpa J, Krashes MJ. Examining the role of olfaction in dietary choice. Cell Rep 2021;34:108755. [PMID: 33596417 DOI: 10.1016/j.celrep.2021.108755] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Lacroix MC, Caillol M, Durieux D, Monnerie R, Grebert D, Pellerin L, Repond C, Tolle V, Zizzari P, Baly C. Long-Lasting Metabolic Imbalance Related to Obesity Alters Olfactory Tissue Homeostasis and Impairs Olfactory-Driven Behaviors. Chem Senses 2015;40:537-56. [PMID: 26209545 DOI: 10.1093/chemse/bjv039] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
53 Glendinning JI, Elson AE, Kalik S, Sosa Y, Patterson CM, Myers MG Jr, Munger SD. Taste responsiveness to sweeteners is resistant to elevations in plasma leptin. Chem Senses 2015;40:223-31. [PMID: 25740302 DOI: 10.1093/chemse/bju075] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
54 Delaere F, Akaoka H, De Vadder F, Duchampt A, Mithieux G. Portal glucose influences the sensory, cortical and reward systems in rats. Eur J Neurosci 2013;38:3476-86. [DOI: 10.1111/ejn.12354] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
55 Huang TW, Li ST, Chen DY, Young TH. Neuropeptide Y increases differentiation of human olfactory receptor neurons through the Y1 receptor. Neuropeptides 2019;78:101964. [PMID: 31526523 DOI: 10.1016/j.npep.2019.101964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
56 Gascuel J, Lemoine A, Rigault C, Datiche F, Benani A, Penicaud L, Lopez-Mascaraque L. Hypothalamus-olfactory system crosstalk: orexin a immunostaining in mice. Front Neuroanat 2012;6:44. [PMID: 23162437 DOI: 10.3389/fnana.2012.00044] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
57 Daumas-meyer V, Champeil-potokar G, Chaumontet C, Dahirel P, Papillon C, Congar P, Denis I. Fasting induces astroglial plasticity in the olfactory bulb glomeruli of rats. Glia 2018;66:762-76. [DOI: 10.1002/glia.23280] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
58 Samerphob N, Cheaha D, Issuriya A, Chatpun S, Lertwittayanon W, Jensen O, Kumarnsit E. Changes in neural network connectivity in mice brain following exposures to palatable food. Neurosci Lett 2020;714:134542. [PMID: 31629035 DOI: 10.1016/j.neulet.2019.134542] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Connor EE, Zhou Y, Liu GE. The essence of appetite: does olfactory receptor variation play a role? J Anim Sci 2018;96:1551-8. [PMID: 29534194 DOI: 10.1093/jas/sky068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
60 Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021;157:1473-94. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Ferry B. The orexinergic system influences conditioned odor aversion learning in the rat: a theory on the processes and hypothesis on the circuit involved. Front Behav Neurosci 2014;8:164. [PMID: 24834041 DOI: 10.3389/fnbeh.2014.00164] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
62 Nikonov AA, Butler JM, Field KE, Caprio J, Maruska KP. Reproductive and metabolic state differences in olfactory responses to amino acids in a mouth brooding African cichlid fish. J Exp Biol 2017;220:2980-92. [PMID: 28596215 DOI: 10.1242/jeb.157925] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]