BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lushchekina SV, Masson P. Slow-binding inhibitors of acetylcholinesterase of medical interest. Neuropharmacology 2020;177:108236. [PMID: 32712274 DOI: 10.1016/j.neuropharm.2020.108236] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Saifina LF, Abdalla M, Gubaidullina LM, Zueva IV, Eltayb WA, El-Arabey AA, Kharlamova AD, Lenina OA, Semenov VE, Petrov KA. Novel slow-binding reversible acetylcholinesterase inhibitors based on uracil moieties for possible treatment of myasthenia gravis and protection from organophosphate poisoning. Eur J Med Chem 2023;246:114949. [PMID: 36462442 DOI: 10.1016/j.ejmech.2022.114949] [Reference Citation Analysis]
2 Liu W, Jiang J, Lin Y, You Q, Wang L. Insight into Thermodynamic and Kinetic Profiles in Small-Molecule Optimization. J Med Chem 2022. [PMID: 35969687 DOI: 10.1021/acs.jmedchem.2c00682] [Reference Citation Analysis]
3 Lamba D, Pesaresi A. Kinetic Modeling of Time-Dependent Enzyme Inhibition by Pre-Steady-State Analysis of Progress Curves: The Case Study of the Anti-Alzheimer's Drug Galantamine. Int J Mol Sci 2022;23:5072. [PMID: 35563466 DOI: 10.3390/ijms23095072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 An J, Zhao L, Duan R, Sun K, Lu W, Yang J, Liang Y, Liu J, Zhang Z, Li L, Shi J. Potential nanotherapeutic strategies for perioperative stroke. CNS Neurosci Ther 2022;28:510-20. [PMID: 35243774 DOI: 10.1111/cns.13819] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Lolak N, Boga M, Sonmez GD, Tuneg M, Dogan A, Akocak S. In Silico Studies and DNA Cleavage, Antioxidant, Acetylcholinesterase, and Butyrylcholinesterase Activity Evaluation of Bis-Histamine Schiff Bases and Bis-Spinaceamine Substituted Derivatives. Pharm Chem J. [DOI: 10.1007/s11094-022-02581-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Heise N, Friedrich S, Temml V, Schuster D, Siewert B, Csuk R. N-methylated diazabicyclo[3.2.2]nonane substituted triterpenoic acids are excellent, hyperbolic and selective inhibitors for butyrylcholinesterase. Eur J Med Chem 2022;227:113947. [PMID: 34731766 DOI: 10.1016/j.ejmech.2021.113947] [Reference Citation Analysis]
7 Peng W, Wang T, Liang XR, Yang YS, Wang QZ, Cheng HF, Peng YK, Ding F. Characterizing the potentially neuronal acetylcholinesterase reactivity toward chiral pyraclofos: Enantioselective insights from spectroscopy, in silico docking, molecular dynamics simulation and per-residue energy decomposition studies. J Mol Graph Model 2022;110:108069. [PMID: 34773872 DOI: 10.1016/j.jmgm.2021.108069] [Reference Citation Analysis]
8 Zueva I, Lushchekina S, Shulnikova P, Lenina O, Petrov K, Molochkina E, Masson P. α-tocopherol, a slow-binding inhibitor of acetylcholinesterase. Chem Biol Interact 2021;348:109646. [PMID: 34506764 DOI: 10.1016/j.cbi.2021.109646] [Reference Citation Analysis]
9 Wang J, Lai S, Kong Y, Yao W, Chen X, Liu J. The protonation state of Glu202 in acetylcholinesterase. Proteins 2021. [PMID: 34546589 DOI: 10.1002/prot.26243] [Reference Citation Analysis]
10 Bachurin SO, Makhaeva GF, Shevtsova EF, Aksinenko AY, Grigoriev VV, Shevtsov PN, Goreva TV, Epishina TA, Kovaleva NV, Pushkareva EA, Boltneva NP, Lushchekina SV, Gabrelyan AV, Zamoyski VL, Dubova LG, Rudakova EV, Fisenko VP, Bovina EV, Richardson RJ. Conjugation of Aminoadamantane and γ-Carboline Pharmacophores Gives Rise to Unexpected Properties of Multifunctional Ligands. Molecules 2021;26:5527. [PMID: 34576998 DOI: 10.3390/molecules26185527] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zueva I, Lenina O, Kayumova R, Petrov K, Masson P. Protective effects of m-(tert-butyl) trifluoroacetophenone, a transition state analogue of acetylcholine, against paraoxon toxicity and memory impairments. Chem Biol Interact 2021;345:109558. [PMID: 34147486 DOI: 10.1016/j.cbi.2021.109558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Pham DS, Nguyen XA, Marsh P, Chu SS, Lau MPH, Nguyen AH, Cao H. A Fluidics-Based Biosensor to Detect and Characterize Inhibition Patterns of Organophosphate to Acetylcholinesterase in Food Materials. Micromachines (Basel) 2021;12:397. [PMID: 33916863 DOI: 10.3390/mi12040397] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Zueva IV, Lushchekina SV, Pottie IR, Darvesh S, Masson P. 1-(3-Tert-Butylphenyl)-2,2,2-Trifluoroethanone as a Potent Transition-State Analogue Slow-Binding Inhibitor of Human Acetylcholinesterase: Kinetic, MD and QM/MM Studies. Biomolecules 2020;10:E1608. [PMID: 33260981 DOI: 10.3390/biom10121608] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
14 Bălașa AF, Chircov C, Grumezescu AM. Body Fluid Biomarkers for Alzheimer's Disease-An Up-To-Date Overview. Biomedicines 2020;8:E421. [PMID: 33076333 DOI: 10.3390/biomedicines8100421] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
15 Lenina OA, Zueva IV, Zobov VV, Semenov VE, Masson P, Petrov KA. Slow-binding reversible inhibitor of acetylcholinesterase with long-lasting action for prophylaxis of organophosphate poisoning. Sci Rep 2020;10:16611. [PMID: 33024231 DOI: 10.1038/s41598-020-73822-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]