BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sekiguchi F, Domoto R, Nakashima K, Yamasoba D, Yamanishi H, Tsubota M, Wake H, Nishibori M, Kawabata A. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. Neuropharmacology 2018;141:201-13. [DOI: 10.1016/j.neuropharm.2018.08.040] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2020;11:626687. [PMID: 33613570 DOI: 10.3389/fimmu.2020.626687] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
2 Meregalli C, Monza L, Chiorazzi A, Scali C, Guarnieri C, Fumagalli G, Alberti P, Pozzi E, Canta A, Ballarini E, Rodriguez-Menendez V, Oggioni N, Cavaletti G, Marmiroli P. Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity. Int J Mol Sci 2021;22:1058. [PMID: 33494384 DOI: 10.3390/ijms22031058] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Matarazzo AP, Elisei LMS, Carvalho FC, Bonfílio R, Ruela ALM, Galdino G, Pereira GR. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur J Pharm Sci 2021;159:105698. [PMID: 33406408 DOI: 10.1016/j.ejps.2020.105698] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Tsubota M, Miyazaki T, Ikeda Y, Hayashi Y, Aokiba Y, Tomita S, Sekiguchi F, Wang D, Nishibori M, Kawabata A. Caspase-Dependent HMGB1 Release from Macrophages Participates in Peripheral Neuropathy Caused by Bortezomib, a Proteasome-Inhibiting Chemotherapeutic Agent, in Mice. Cells 2021;10:2550. [PMID: 34685531 DOI: 10.3390/cells10102550] [Reference Citation Analysis]
5 Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020;22:E367. [PMID: 33396481 DOI: 10.3390/ijms22010367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Nishibori M, Wang D, Ousaka D, Wake H. High Mobility Group Box-1 and Blood-Brain Barrier Disruption. Cells 2020;9:E2650. [PMID: 33321691 DOI: 10.3390/cells9122650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
7 Zhao YX, Yu XC, Gao JH, Yao MJ, Zhu B. Acupuncture for Paclitaxel-Induced Peripheral Neuropathy: A Review of Clinical and Basic Studies. J Pain Res 2021;14:993-1005. [PMID: 33883931 DOI: 10.2147/JPR.S296150] [Reference Citation Analysis]
8 Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020;72:486-507. [PMID: 32394362 DOI: 10.1007/s43440-020-00109-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
9 Bouchenaki H, Bernard A, Bessaguet F, Frachet S, Richard L, Sturtz F, Magy L, Bourthoumieu S, Demiot C, Danigo A. Neuroprotective Effect of Ramipril Is Mediated by AT2 in a Mouse MODEL of Paclitaxel-Induced Peripheral Neuropathy. Pharmaceutics 2022;14:848. [DOI: 10.3390/pharmaceutics14040848] [Reference Citation Analysis]
10 Chen J, Jiang Z, Zhou X, Sun X, Cao J, Liu Y, Wang X. Dexmedetomidine Preconditioning Protects Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Necroptosis by Inhibiting HMGB1-Mediated Inflammation. Cardiovasc Drugs Ther 2019;33:45-54. [PMID: 30675709 DOI: 10.1007/s10557-019-06857-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
11 Miyamoto T, Hiramoto S, Kanto A, Tsubota M, Fujitani M, Fukuyama H, Hatanaka S, Sekiguchi F, Koizumi Y, Kawabata A. Estrogen decline is a risk factor for paclitaxel-induced peripheral neuropathy: Clinical evidence supported by a preclinical study. J Pharmacol Sci 2021;146:49-57. [PMID: 33858655 DOI: 10.1016/j.jphs.2021.03.001] [Reference Citation Analysis]
12 Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 2020;324:113121. [PMID: 31758983 DOI: 10.1016/j.expneurol.2019.113121] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
13 Meng L, Huang J, Qiu F, Shan X, Chen L, Sun S, Wang Y, Yang J. Peripheral Neuropathy During Concomitant Administration of Proteasome Inhibitors and Factor Xa Inhibitors: Identifying the Likelihood of Drug-Drug Interactions. Front Pharmacol 2022;13:757415. [DOI: 10.3389/fphar.2022.757415] [Reference Citation Analysis]
14 Pizzamiglio C, Ripellino P, Prandi P, Clemente N, Saggia C, Rossi V, Strigaro G, Luigi Foglio Bonda P, Comi C, Cantello R. Nerve conduction, circulating osteopontin and taxane-induced neuropathy in breast cancer patients. Neurophysiol Clin 2020;50:47-54. [PMID: 31928832 DOI: 10.1016/j.neucli.2019.12.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021;:1-14. [PMID: 34313190 DOI: 10.1080/0284186X.2021.1954241] [Reference Citation Analysis]
16 Tomita S, Sekiguchi F, Kasanami Y, Naoe K, Tsubota M, Wake H, Nishibori M, Kawabata A. Cav3.2 overexpression in L4 dorsal root ganglion neurons after L5 spinal nerve cutting involves Egr-1, USP5 and HMGB1 in rats: An emerging signaling pathway for neuropathic pain. Eur J Pharmacol 2020;888:173587. [PMID: 32971090 DOI: 10.1016/j.ejphar.2020.173587] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
17 Rudjito R, Agalave NM, Farinotti AB, Lundbäck P, Szabo-Pardi TA, Price TJ, Harris HE, Burton MD, Svensson CI. Sex- and cell-dependent contribution of peripheral high mobility group box 1 and TLR4 in arthritis-induced pain. Pain 2021;162:459-70. [PMID: 32796317 DOI: 10.1097/j.pain.0000000000002034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
18 Minami T, Takeda M, Sata M, Kato H, Yano K, Sakai T, Tsujita R, Kawasaki K, Ito A. Thrombomodulin alfa prevents oxaliplatin-induced neuropathic symptoms through activation of thrombin-activatable fibrinolysis inhibitor and protein C without affecting anti-tumor activity. Eur J Pharmacol 2020;880:173196. [PMID: 32416186 DOI: 10.1016/j.ejphar.2020.173196] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
19 Klein I, Lehmann HC. Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. Toxics 2021;9:229. [PMID: 34678925 DOI: 10.3390/toxics9100229] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Barry CM, Matusica D, Haberberger RV. Emerging Evidence of Macrophage Contribution to Hyperinnervation and Nociceptor Sensitization in Vulvodynia. Front Mol Neurosci 2019;12:186. [PMID: 31447644 DOI: 10.3389/fnmol.2019.00186] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
21 Hiramoto S, Asano H, Miyamoto T, Takegami M, Kawabata A. Risk factors and pharmacotherapy for chemotherapy-induced peripheral neuropathy in paclitaxel-treated female cancer survivors: A retrospective study in Japan. PLoS One 2021;16:e0261473. [PMID: 34972132 DOI: 10.1371/journal.pone.0261473] [Reference Citation Analysis]
22 Nishibori M, Mori S, Takahashi HK. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J Pharmacol Sci 2019;140:94-101. [PMID: 31105025 DOI: 10.1016/j.jphs.2019.04.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
23 Tsubota M, Fukuda R, Hayashi Y, Miyazaki T, Ueda S, Yamashita R, Koike N, Sekiguchi F, Wake H, Wakatsuki S, Ujiie Y, Araki T, Nishibori M, Kawabata A. Role of non-macrophage cell-derived HMGB1 in oxaliplatin-induced peripheral neuropathy and its prevention by the thrombin/thrombomodulin system in rodents: negative impact of anticoagulants. J Neuroinflammation 2019;16:199. [PMID: 31666085 DOI: 10.1186/s12974-019-1581-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
24 Hwang SM, Chung G, Kim YH, Park CK. The Role of Maresins in Inflammatory Pain: Function of Macrophages in Wound Regeneration. Int J Mol Sci 2019;20:E5849. [PMID: 31766461 DOI: 10.3390/ijms20235849] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
25 Sałat K. Chemotherapy-induced peripheral neuropathy-part 2: focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol Rep 2020;72:508-27. [PMID: 32347537 DOI: 10.1007/s43440-020-00106-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
26 Miyamoto T, Domoto R, Sekiguchi F, Kamaguchi R, Nishimura R, Matsuno M, Tsubota M, Fujitani M, Hatanaka S, Koizumi Y, Wang D, Nishibori M, Kawabata A. Development of hepatic impairment aggravates chemotherapy-induced peripheral neuropathy following oxaliplatin treatment: Evidence from clinical and preclinical studies. Journal of Pharmacological Sciences 2022. [DOI: 10.1016/j.jphs.2022.01.006] [Reference Citation Analysis]
27 Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol 2020;11:484. [PMID: 32265930 DOI: 10.3389/fimmu.2020.00484] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 30.5] [Reference Citation Analysis]
28 Sivanesan E, Goebel A. Complex regional pain syndrome: developing diagnostic tools and treatments from sympathetic nervous system, neuroimmune and neuromodulation discoveries in neuropathic pain. Reg Anesth Pain Med 2021;46:193-5. [PMID: 33419876 DOI: 10.1136/rapm-2020-102327] [Reference Citation Analysis]
29 Kawashiri T, Inoue M, Mori K, Kobayashi D, Mine K, Ushio S, Kudamatsu H, Uchida M, Egashira N, Shimazoe T. Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 2021;22:8733. [PMID: 34445439 DOI: 10.3390/ijms22168733] [Reference Citation Analysis]
30 Irie Y, Tsubota M, Maeda M, Hiramoto S, Sekiguchi F, Ishikura H, Wake H, Nishibori M, Kawabata A. HMGB1 and its membrane receptors as therapeutic targets in an intravesical substance P-induced bladder pain syndrome mouse model. J Pharmacol Sci 2020;143:112-6. [PMID: 32222337 DOI: 10.1016/j.jphs.2020.03.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Domoto R, Sekiguchi F, Kamaguchi R, Iemura M, Yamanishi H, Tsubota M, Wang D, Nishibori M, Kawabata A. Role of neuron-derived ATP in paclitaxel-induced HMGB1 release from macrophages and peripheral neuropathy. J Pharmacol Sci 2022;148:156-61. [PMID: 34924121 DOI: 10.1016/j.jphs.2021.11.003] [Reference Citation Analysis]
32 Ma Y, Zhang Z, Chen R, Shi R, Zeng P, Chen R, Leng Y, Chen AF. NRP1 regulates HMGB1 in vascular endothelial cells under high homocysteine condition. Am J Physiol Heart Circ Physiol 2019;316:H1039-46. [PMID: 30767669 DOI: 10.1152/ajpheart.00746.2018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
33 Domoto R, Sekiguchi F, Tsubota M, Kawabata A. Macrophage as a Peripheral Pain Regulator. Cells 2021;10:1881. [PMID: 34440650 DOI: 10.3390/cells10081881] [Reference Citation Analysis]
34 Tsujita R, Tsubota M, Sekiguchi F, Kawabata A. Role of high-mobility group box 1 and its modulation by thrombomodulin/thrombin axis in neuropathic and inflammatory pain. Br J Pharmacol 2021;178:798-812. [PMID: 32374414 DOI: 10.1111/bph.15091] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
35 Hiramoto S, Tsubota M, Yamaguchi K, Okazaki K, Sakaegi A, Toriyama Y, Tanaka J, Sekiguchi F, Ishikura H, Wake H, Nishibori M, Nguyen HD, Okada T, Toyooka N, Kawabata A. Cystitis-Related Bladder Pain Involves ATP-Dependent HMGB1 Release from Macrophages and Its Downstream H2S/Cav3.2 Signaling in Mice. Cells 2020;9:E1748. [PMID: 32707767 DOI: 10.3390/cells9081748] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
36 Agalave NM, Rudjito R, Farinotti AB, Khoonsari PE, Sandor K, Nomura Y, Szabo-Pardi TA, Urbina CM, Palada V, Price TJ, Erlandsson Harris H, Burton MD, Kultima K, Svensson CI. Sex-dependent role of microglia in disulfide high mobility group box 1 protein-mediated mechanical hypersensitivity. Pain 2021;162:446-58. [PMID: 32773600 DOI: 10.1097/j.pain.0000000000002033] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
37 Hisaoka-Nakashima K, Azuma H, Ishikawa F, Nakamura Y, Wang D, Liu K, Wake H, Nishibori M, Nakata Y, Morioka N. Corticosterone Induces HMGB1 Release in Primary Cultured Rat Cortical Astrocytes: Involvement of Pannexin-1 and P2X7 Receptor-Dependent Mechanisms. Cells 2020;9:E1068. [PMID: 32344830 DOI: 10.3390/cells9051068] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]