1 |
Huang M, Chen C, Chen L, Chang H, Chen C, Lin S, Xu K. Chronic ketamine abuse is associated with orexin-A reduction and ACTH elevation. Psychopharmacology 2020;237:45-53. [DOI: 10.1007/s00213-019-05342-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
|
2 |
Dale NC, Hoyer D, Jacobson LH, Pfleger KDG, Johnstone EKM. Orexin Signaling: A Complex, Multifaceted Process. Front Cell Neurosci 2022;16:812359. [DOI: 10.3389/fncel.2022.812359] [Reference Citation Analysis]
|
3 |
Bjorness TE, Greene RW. Interaction between cocaine use and sleep behavior: A comprehensive review of cocaine's disrupting influence on sleep behavior and sleep disruptions influence on reward seeking. Pharmacol Biochem Behav 2021;206:173194. [PMID: 33940055 DOI: 10.1016/j.pbb.2021.173194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
4 |
Elam HB, Perez SM, Donegan JJ, Lodge DJ. Orexin receptor antagonists reverse aberrant dopamine neuron activity and related behaviors in a rodent model of stress-induced psychosis. Transl Psychiatry 2021;11:114. [PMID: 33558469 DOI: 10.1038/s41398-021-01235-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Sieminski M, Szypenbejl J, Partinen E. Orexins, Sleep, and Blood Pressure. Curr Hypertens Rep. 2018;20:79. [PMID: 29992504 DOI: 10.1007/s11906-018-0879-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
6 |
Pantazis CB, James MH, Bentzley BS, Aston-Jones G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict Biol 2020;25:e12795. [PMID: 31297913 DOI: 10.1111/adb.12795] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
|
7 |
Blum K, Kazmi S, Modestino EJ, Downs BW, Bagchi D, Baron D, McLaughlin T, Green R, Jalali R, Thanos PK, Elman I, Badgaiyan RD, Bowirrat A, Gold MS. A Novel Precision Approach to Overcome the "Addiction Pandemic" by Incorporating Genetic Addiction Risk Severity (GARS) and Dopamine Homeostasis Restoration. J Pers Med 2021;11:212. [PMID: 33809702 DOI: 10.3390/jpm11030212] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
8 |
Rorabaugh BR, Rose MJ, Stoops TS, Stevens AA, Seeley SL, D'Souza MS. Regulators of G-protein signaling 2 and 4 differentially regulate cocaine-induced rewarding effects. Physiol Behav 2018;195:9-19. [PMID: 30036561 DOI: 10.1016/j.physbeh.2018.07.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
|
10 |
Alegre-zurano L, Berbegal-sáez P, Luján MÁ, Cantacorps L, Martín-sánchez A, García-baos A, Valverde O. Cannabidiol decreases motivation for cocaine in a behavioral economics paradigm but does not prevent incubation of craving in mice. Biomedicine & Pharmacotherapy 2022;148:112708. [DOI: 10.1016/j.biopha.2022.112708] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Khosrowabadi E, Karimi-haghighi S, Jamali S, Haghparast A. Differential Roles of Intra-accumbal Orexin Receptors in Acquisition and Expression of Methamphetamine-Induced Conditioned Place Preference in the Rats. Neurochem Res 2020;45:2230-41. [DOI: 10.1007/s11064-020-03084-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Simmons SJ, Gentile TA. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res 2020;1731:146164. [PMID: 30796894 DOI: 10.1016/j.brainres.2019.02.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Yeoh JW, James MH, Adams CD, Bains JS, Sakurai T, Aston-Jones G, Graham BA, Dayas CV. Activation of lateral hypothalamic group III metabotropic glutamate receptors suppresses cocaine-seeking following abstinence and normalizes drug-associated increases in excitatory drive to orexin/hypocretin cells. Neuropharmacology 2019;154:22-33. [PMID: 30253175 DOI: 10.1016/j.neuropharm.2018.09.033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
|
14 |
Suchting R, Yoon JH, Miguel GGS, Green CE, Weaver MF, Vincent JN, Fries GR, Schmitz JM, Lane SD. Preliminary examination of the orexin system on relapse-related factors in cocaine use disorder. Brain Res 2020;1731:146359. [PMID: 31374218 DOI: 10.1016/j.brainres.2019.146359] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
|
15 |
Choi MR, Cho H, Chun JW, Yoo JH, Kim DJ. Increase of orexin A in the peripheral blood of adolescents with Internet gaming disorder. J Behav Addict 2020;9:93-104. [PMID: 31957460 DOI: 10.1556/2006.8.2019.65] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
|
17 |
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry 2022; 12(1): 24-58 [DOI: 10.5498/wjp.v12.i1.24] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|