BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ahmadi-soleimani SM, Azizi H, Gompf HS, Semnanian S. Role of orexin type-1 receptors in paragiganto-coerulear modulation of opioid withdrawal and tolerance: A site specific focus. Neuropharmacology 2017;126:25-37. [DOI: 10.1016/j.neuropharm.2017.08.024] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Fakhari M, Azizi H, Semnanian S. Central antagonism of orexin type-1 receptors attenuates the development of morphine dependence in rat locus coeruleus neurons. Neuroscience 2017;363:1-10. [DOI: 10.1016/j.neuroscience.2017.08.054] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
2 Fartootzadeh R, Azizi F, Alaei H, Reisi P. Orexin type-2 receptor blockade prevents the nicotine-induced excitation of nucleus accumbens core neurons in rats: An electrophysiological perspective. Pharmacol Rep 2019;71:361-6. [PMID: 30831442 DOI: 10.1016/j.pharep.2018.12.013] [Reference Citation Analysis]
3 Aghajani N, Pourhamzeh M, Azizi H, Semnanian S. Central blockade of orexin type 1 receptors reduces naloxone induced activation of locus coeruleus neurons in morphine dependent rats. Neurosci Lett 2021;755:135909. [PMID: 33892002 DOI: 10.1016/j.neulet.2021.135909] [Reference Citation Analysis]
4 Mousavi Z, Kourosh-Arami M, Mohsenzadegan M, Komaki A. An immunohistochemical study of the effects of orexin receptor blockade on phospholipase C-β3 level in rat hippocampal dentate gyrus neurons. Biotech Histochem 2021;96:191-6. [PMID: 32580652 DOI: 10.1080/10520295.2020.1778088] [Reference Citation Analysis]
5 Sheikholeslami MA, Parvardeh S, Ghafghazi S, Moini Zanjani T, Sabetkasaei M. The Attenuating Effect of Curcumin on Morphine Dependence in Rats: The Involvement of Spinal Microglial Cells and Inflammatory Cytokines. Iran J Pharm Res 2019;18:198-207. [PMID: 32802100 DOI: 10.22037/ijpr.2019.111701.13309] [Reference Citation Analysis]
6 Wille SMR, Elliott S. The Future of Analytical and Interpretative Toxicology: Where are We Going and How Do We Get There? J Anal Toxicol 2021;45:619-32. [PMID: 33245325 DOI: 10.1093/jat/bkaa133] [Reference Citation Analysis]
7 Ghasemi E, Pachenari N, Semnanian S, Azizi H. Adolescent morphine exposure increases nociceptive behaviors in rat model of formalin test. Dev Psychobiol 2019;61:254-60. [DOI: 10.1002/dev.21790] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
8 Esmaili-Shahzade-Ali-Akbari P, Hosseinzadeh H, Mehri S. Effect of suvorexant on morphine tolerance and dependence in mice: Role of NMDA, AMPA, ERK and CREB proteins. Neurotoxicology 2021;84:64-72. [PMID: 33609567 DOI: 10.1016/j.neuro.2021.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kourosh-arami M, Kaeidi A, Semnanian S. Extracellular Calcium Contributes to Orexin-Induced Postsynaptic Excitation of the Rat Locus Coeruleus Neurons. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10379-0] [Reference Citation Analysis]
10 Kang X, Tang H, Liu Y, Yuan Y, Wang M. Research progress on the mechanism of orexin in pain regulation in different brain regions. Open Life Sci 2021;16:46-52. [PMID: 33817297 DOI: 10.1515/biol-2021-0001] [Reference Citation Analysis]
11 Torabi M, Azizi H, Ahmadi-soleimani SM, Rezayof A. Adolescent nicotine challenge promotes the future vulnerability to opioid addiction: Involvement of lateral paragigantocellularis neurons. Life Sciences 2019;234:116784. [DOI: 10.1016/j.lfs.2019.116784] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
12 Elahi-mahani A, Heysieattalab S, Hosseinmardi N, Janahmadi M, Seyedaghamiri F, Khoshbouei H. Glial cells modulate hippocampal synaptic plasticity in morphine dependent rats. Brain Research Bulletin 2018;140:97-106. [DOI: 10.1016/j.brainresbull.2018.04.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Rezaei Z, Kourosh-arami M, Azizi H, Semnanian S. Orexin type-1 receptor inhibition in the rat lateral paragigantocellularis nucleus attenuates development of morphine dependence. Neuroscience Letters 2020;724:134875. [DOI: 10.1016/j.neulet.2020.134875] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
14 Salmanzadeh H, Azizi H, Ahmadi Soleimani SM, Pachenari N, Semnanian S. Chronic adolescent morphine exposure alters the responses of lateral paragigantocellular neurons to acute morphine administration in adulthood. Brain Research Bulletin 2018;137:178-86. [DOI: 10.1016/j.brainresbull.2017.12.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
15 Masrouri H, Azadi M, Semnanian S, Azizi H. Early life maternal deprivation attenuates morphine induced inhibition in lateral paragigantocellularis neurons in adult rats. Brain Res Bull 2021;169:128-35. [PMID: 33482287 DOI: 10.1016/j.brainresbull.2021.01.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Song SY, Li Y, Zhai XM, Li YH, Bao CY, Shan CJ, Hong J, Cao JL, Zhang LC. Connection Input Mapping and 3D Reconstruction of the Brainstem and Spinal Cord Projections to the CSF-Contacting Nucleus. Front Neural Circuits 2020;14:11. [PMID: 32296310 DOI: 10.3389/fncir.2020.00011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Rancic V, Rawal B, Panaitescu B, Ruangkittisakul A, Ballanyi K. Suction electrode recording in locus coeruleus of newborn rat brain slices reveals network bursting comprising summated non-synchronous spiking. Neuroscience Letters 2018;671:103-7. [DOI: 10.1016/j.neulet.2018.02.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
18 Hooshmand B, Azizi H, Ahmadi-soleimani SM, Semnanian S. Synergistic effect of orexin-glutamate co-administration on spontaneous discharge rate of locus coeruleus neurons in morphine-dependent rats. Neuroscience Letters 2019;706:12-7. [DOI: 10.1016/j.neulet.2019.04.060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
19 Babasafari M, Kourosharami M, Behman J, Farhadi M, Komaki A. Alteration of Phospholipase C Expression in Rat Visual Cortical Neurons by Chronic Blockade of Orexin Receptor 1. Int J Pept Res Ther 2020;26:1485-91. [DOI: 10.1007/s10989-019-09943-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
20 Saffar S, Fatemi I, Rahmani M, Hassanshahi J, Sahamsizadeh A, Allahtavakoli M, Sheibani V, Kaeidi A. The effect of epigallocatechin-3-gallate on morphine-induced memory impairments in rat: EGCG effects on morphine neurotoxicity. Hum Exp Toxicol 2020;39:994-1002. [PMID: 32129083 DOI: 10.1177/0960327120909540] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Ahmadi-Soleimani SM, Azizi H, Abbasi-Mazar A. Intermittent REM sleep deprivation attenuates the development of morphine tolerance and dependence in male rats. Neurosci Lett 2021;748:135735. [PMID: 33592307 DOI: 10.1016/j.neulet.2021.135735] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Davoudi M, Azizi H, Mirnajafi-zadeh J, Semnanian S. Decrease of inhibitory synaptic currents of locus coeruleus neurons via orexin type 1 receptors in the context of naloxone-induced morphine withdrawal. J Physiol Sci 2019;69:281-93. [DOI: 10.1007/s12576-018-0645-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
23 Kargar HM, Azizi H, Mirnajafi-zadeh J, Mani AR, Semnanian S. Orexin A presynaptically decreases inhibitory synaptic transmission in rat locus coeruleus neurons. Neuroscience Letters 2018;683:89-93. [DOI: 10.1016/j.neulet.2018.06.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
24 Llorca-torralba M, Mico JA, Berrocoso E. Behavioral effects of combined morphine and MK-801 administration to the locus coeruleus of a rat neuropathic pain model. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;84:257-66. [DOI: 10.1016/j.pnpbp.2018.03.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
25 Sheng Q, Xue Y, Wang Y, Chen AQ, Liu C, Liu YH, Chu HY, Chen L. The Subthalamic Neurons are Activated by Both Orexin-A and Orexin-B. Neuroscience 2018;369:97-108. [PMID: 29138106 DOI: 10.1016/j.neuroscience.2017.11.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
26 Pachenari N, Azizi H, Ghasemi E, Azadi M, Semnanian S. Exposure to opiates in male adolescent rats alters pain perception in the male offspring. Behav Pharmacol 2018;29:255-60. [PMID: 29543652 DOI: 10.1097/FBP.0000000000000388] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 5.7] [Reference Citation Analysis]
27 Ahmadi Soleimani SM, Mohamadi M.a.h MH, Raoufy MR, Azizi H, Nasehi M, Zarrindast MR. Acute morphine administration alters the power of local field potentials in mesolimbic pathway of freely moving rats: Involvement of dopamine receptors. Neuroscience Letters 2018;686:168-74. [DOI: 10.1016/j.neulet.2018.09.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
28 Sabuee S, Ahmadi-Soleimani SM, Azizi H. Prolonged morphine exposure during adolescence alters the responses of lateral paragigantocellularis neurons to naloxone in adult morphine dependent rats. J Physiol Sci 2021;71:25. [PMID: 34429058 DOI: 10.1186/s12576-021-00810-4] [Reference Citation Analysis]
29 Azadi M, Gompf HS, Azizi H. Paternal exposure to morphine during adolescence potentiates morphine withdrawal in male offspring: Involvement of the lateral paragigantocellularis nucleus. J Psychopharmacol 2020;34:1289-99. [DOI: 10.1177/0269881120953993] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
30 Shi Z, Pan S, Wang L, Li S. Oleanolic Acid Attenuates Morphine Withdrawal Symptoms in Rodents: Association with Regulation of Dopamine Function. Drug Des Devel Ther 2021;15:3685-96. [PMID: 34465980 DOI: 10.2147/DDDT.S326583] [Reference Citation Analysis]
31 Ahmadi-soleimani SM, Mianbandi V, Azizi H, Azhdari-zarmehri H, Ghaemi-jandabi M, Abbasi-mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behavioural Brain Research 2020;391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
32 Kourosh-Arami M, Joghataei MT, Komaki A, Gholami M, Najafi Z, Lavaie M. Persistent effects of the orexin-1 receptor antagonist SB-334867 on naloxone precipitated morphine withdrawal symptoms and nociceptive behaviors in morphine dependent rats. Int J Neurosci 2020;:1-10. [PMID: 32746675 DOI: 10.1080/00207454.2020.1802266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Rezamohammadi F, Rahmani M, Ghanbari A, Khaleghian A, Miladi-Gorji H. BDNF receptor antagonism during the induction of morphine dependence exacerbates the severity of physical dependence and ameliorates psychological dependence in rats. Neurosci Lett 2020;737:135332. [PMID: 32860885 DOI: 10.1016/j.neulet.2020.135332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Niknia S, Kaeidi A, Hajizadeh MR, Mirzaei MR, Khoshdel A, Hajializadeh Z, Fahmidehkar MA, Mahmoodi M. Neuroprotective and antihyperalgesic effects of orexin-A in rats with painful diabetic neuropathy. Neuropeptides 2019;73:34-40. [DOI: 10.1016/j.npep.2018.11.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
35 Shibani F, Sahamsizadeh A, Fatemi I, Allahtavakoli M, Hasanshahi J, Rahmani M, Azin M, Hassanipour M, Mozafari N, Kaeidi A. Effect of oleuropein on morphine-induced hippocampus neurotoxicity and memory impairments in rats. Naunyn Schmiedebergs Arch Pharmacol 2019;392:1383-91. [PMID: 31236657 DOI: 10.1007/s00210-019-01678-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
36 Pachenari N, Azizi H, Semnaniann S. Adolescent Morphine Exposure in Male Rats Alters the Electrophysiological Properties of Locus Coeruleus Neurons of the Male Offspring. Neuroscience 2019;410:108-17. [DOI: 10.1016/j.neuroscience.2019.05.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
37 Li Z, Jia X, Peng X, Gao F. The Interaction Between Spinal PDGFRβ and μ Opioid Receptor in the Activation of Microglia in Morphine-Tolerant Rats. J Pain Res 2020;13:1803-10. [PMID: 32765055 DOI: 10.2147/JPR.S255221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Mohammadkhani A, James MH, Pantazis CB, Aston-Jones G. Persistent effects of the orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain Res 2020;1731:146461. [PMID: 31526801 DOI: 10.1016/j.brainres.2019.146461] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
39 Khakpay R, Azaddar M, Khakpai F. Involvement of glutamate receptors of the paragigantocellularis lateralis nucleus in the pain modulatory effect of 17β-estradiol in male rats. Acta Neurol Belg 2020;120:653-60. [PMID: 30132138 DOI: 10.1007/s13760-018-0998-5] [Reference Citation Analysis]
40 Mohammadzadeh L, Alizadeh AM, Feiz MS, Jamali S, Abedi M, Latifi H, Haghparast A. Acute morphine administration, morphine dependence, and naloxone-induced withdrawal syndrome affect the resting-state functional connectivity and local field potentials of the rat prefrontal cortex. Behav Brain Res 2022;:113859. [PMID: 35337941 DOI: 10.1016/j.bbr.2022.113859] [Reference Citation Analysis]
41 Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020;156:105-17. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
42 Vassoler FM, Isgate SB, Budge KE, Byrnes EM. HPA Axis Dysfunction during Morphine Withdrawal in Offspring of Female Rats Exposed to Opioids Preconception. Neuroscience Letters 2022. [DOI: 10.1016/j.neulet.2022.136479] [Reference Citation Analysis]
43 Alaee E, Farahani F, Semnanian S, Azizi H. Prenatal exposure to morphine enhances excitability in locus coeruleus neurons. J Neural Transm (Vienna) 2022. [PMID: 35674919 DOI: 10.1007/s00702-022-02515-3] [Reference Citation Analysis]