BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dacre J, Colligan M, Clarke T, Ammer JJ, Schiemann J, Chamosa-Pino V, Claudi F, Harston JA, Eleftheriou C, Pakan JMP, Huang CC, Hantman AW, Rochefort NL, Duguid I. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron 2021;109:2326-2338.e8. [PMID: 34146469 DOI: 10.1016/j.neuron.2021.05.016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 29.0] [Reference Citation Analysis]
Number Citing Articles
1 Pemberton J, Chadderton P, Costa RP. Cerebellar-driven cortical dynamics enable task acquisition, switching and consolidation.. [DOI: 10.1101/2022.11.14.516257] [Reference Citation Analysis]
2 Cattarinussi G, Gugliotta AA, Hirjak D, Wolf RC, Sambataro F. Brain mechanisms underlying catatonia: A systematic review. Schizophrenia Research 2022. [DOI: 10.1016/j.schres.2022.11.002] [Reference Citation Analysis]
3 Anteraper S, Guell X, Whitfield-gabrieli S. Big contributions of the little brain for precision psychiatry. Front Psychiatry 2022;13:1021873. [DOI: 10.3389/fpsyt.2022.1021873] [Reference Citation Analysis]
4 Machado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 2022. [PMID: 36192596 DOI: 10.1038/s41583-022-00634-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Terada S, Kobayashi K, Matsuzaki M. Transition of distinct context-dependent ensembles from secondary to primary motor cortex in skilled motor performance. Cell Reports 2022;41:111494. [DOI: 10.1016/j.celrep.2022.111494] [Reference Citation Analysis]
6 Barrett JM, Martin ME, Shepherd GM. Manipulation-specific cortical activity as mice handle food. Current Biology 2022. [DOI: 10.1016/j.cub.2022.09.045] [Reference Citation Analysis]
7 Maccarone MC, Masiero S. Can spa rehabilitative interventions play a role for patients suffering from neurodegenerative disorders at the early stages? A scoping review. Int J Biometeorol 2022. [PMID: 36129582 DOI: 10.1007/s00484-022-02369-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li M, Lou S, Gao Y, Zheng H, Hu B, Tan J. A cerebellar operant conditioning-inspired constraint satisfaction approach for product design concept generation. International Journal of Production Research. [DOI: 10.1080/00207543.2022.2116734] [Reference Citation Analysis]
9 Wheatcroft T, Saleem AB, Solomon SG. Functional Organisation of the Mouse Superior Colliculus. Front Neural Circuits 2022;16:792959. [DOI: 10.3389/fncir.2022.792959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Currie SP, Ammer JJ, Premchand B, Dacre J, Wu Y, Eleftheriou C, Colligan M, Clarke T, Mitchell L, Faisal AA, Hennig MH, Duguid I. Movement-specific signaling is differentially distributed across motor cortex layer 5 projection neuron classes. Cell Rep 2022;39:110801. [PMID: 35545038 DOI: 10.1016/j.celrep.2022.110801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Nashef A, Cohen O, Perlmutter SI, Prut Y. A cerebellar origin of feedforward inhibition to the motor cortex in non-human primates. Cell Rep 2022;39:110803. [PMID: 35545040 DOI: 10.1016/j.celrep.2022.110803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Okada KI, Takeya R, Tanaka M. Neural signals regulating motor synchronization in the primate deep cerebellar nuclei. Nat Commun 2022;13:2504. [PMID: 35523898 DOI: 10.1038/s41467-022-30246-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Avila E, Flierman NA, Holland PJ, Roelfsema PR, Frens MA, Badura A, De Zeeuw CI. Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques. Front Cell Neurosci 2022;16:863181. [DOI: 10.3389/fncel.2022.863181] [Reference Citation Analysis]
14 Arber S, Costa RM. Networking brainstem and basal ganglia circuits for movement. Nat Rev Neurosci. [DOI: 10.1038/s41583-022-00581-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Inagaki HK, Chen S, Ridder MC, Sah P, Li N, Yang Z, Hasanbegovic H, Gao Z, Gerfen CR, Svoboda K. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 2022;185:1065-1081.e23. [PMID: 35245431 DOI: 10.1016/j.cell.2022.02.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 18.0] [Reference Citation Analysis]
16 Wang T, Chen Y, Cui H. From Parametric Representation to Dynamical System: Shifting Views of the Motor Cortex in Motor Control. Neurosci Bull 2022. [PMID: 35298779 DOI: 10.1007/s12264-022-00832-x] [Reference Citation Analysis]
17 Won J, Callow DD, Purcell JJ, Smith JC. Differential associations of regional cerebellar volume with gait speed and working memory. Sci Rep 2022;12:2355. [PMID: 35149757 DOI: 10.1038/s41598-022-06180-0] [Reference Citation Analysis]
18 Dura-bernal S, Neymotin SA, Suter BA, Dacre J, Schiemann J, Duguid I, Shepherd GM, Lytton WW. Multiscale model of primary motor cortex circuits predicts in vivo cell type-specific, behavioral state-dependent dynamics.. [DOI: 10.1101/2022.02.03.479040] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Spaeth L, Bahuguna J, Gagneux T, Dorgans K, Sugihara I, Poulain B, Battaglia D, Isope P. Cerebellar connectivity maps embody individual adaptive behavior in mice. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-27984-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021;15:759948. [PMID: 34975418 DOI: 10.3389/fnana.2021.759948] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Bina L, Romano V, Hoogland TM, Bosman LWJ, De Zeeuw CI. Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Rep 2021;37:110116. [PMID: 34910904 DOI: 10.1016/j.celrep.2021.110116] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
22 Elmaleh M, Kranz D, Asensio AC, Moll FW, Long MA. Sleep replay reveals premotor circuit structure for a skilled behavior. Neuron 2021;109:3851-3861.e4. [PMID: 34626537 DOI: 10.1016/j.neuron.2021.09.021] [Reference Citation Analysis]
23 van der Heijden ME, Brown AM, Sillitoe RV. Motor control: Internalizing your place in the world. Current Biology 2021;31:R1576-8. [DOI: 10.1016/j.cub.2021.10.056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Zhang CL, Koukouli F, Allegra M, Ortiz C, Kao HL, Maskos U, Changeux JP, Schmidt-Hieber C. Inhibitory control of synaptic signals preceding locomotion in mouse frontal cortex. Cell Rep 2021;37:110035. [PMID: 34818555 DOI: 10.1016/j.celrep.2021.110035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Low AYT, Goldstein N, Gaunt JR, Huang KP, Zainolabidin N, Yip AKK, Carty JRE, Choi JY, Miller AM, Ho HST, Lenherr C, Baltar N, Azim E, Sessions OM, Ch'ng TH, Bruce AS, Martin LE, Halko MA, Brady RO Jr, Holsen LM, Alhadeff AL, Chen AI, Betley JN. Reverse-translational identification of a cerebellar satiation network. Nature 2021;600:269-73. [PMID: 34789878 DOI: 10.1038/s41586-021-04143-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
26 Dooley JC, Sokoloff G, Blumberg MS. Movements during sleep reveal the developmental emergence of a cerebellar-dependent internal model in motor thalamus. Curr Biol 2021:S0960-9822(21)01368-3. [PMID: 34727521 DOI: 10.1016/j.cub.2021.10.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Malonis PJ, Hatsopoulos NG, Maclean JN, Kaufman MT. M1 dynamics share similar inputs for initiating and correcting movement.. [DOI: 10.1101/2021.10.18.464704] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Frontera JL, Léna C. When the cerebellum holds the starting gun. Neuron 2021;109:2207-9. [PMID: 34293289 DOI: 10.1016/j.neuron.2021.06.027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Zhang C, Koukouli F, Allegra M, Ortiz C, Kao H, Maskos U, Changeux J, Schmidt-hieber C. Inhibitory control of synaptic signals preceding motor action in mouse frontal cortex.. [DOI: 10.1101/2021.07.05.451151] [Reference Citation Analysis]
30 Dooley JC, Sokoloff G, Blumberg MS. Developmental onset of a cerebellar-dependent forward model of movement in motor thalamus.. [DOI: 10.1101/2021.06.25.449956] [Reference Citation Analysis]
31 Currie SP, Ammer JJ, Premchand B, Dacre J, Wu Y, Eleftheriou C, Colligan M, Clarke T, Mitchell L, Faisal A, Hennig MH, Duguid I. Spatiotemporal organization of movement-invariant and movement-specific signaling in the output layer of motor cortex.. [DOI: 10.1101/2020.10.27.357087] [Cited by in F6Publishing: 1] [Reference Citation Analysis]