BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mahn M, Saraf-Sinik I, Patil P, Pulin M, Bitton E, Karalis N, Bruentgens F, Palgi S, Gat A, Dine J, Wietek J, Davidi I, Levy R, Litvin A, Zhou F, Sauter K, Soba P, Schmitz D, Lüthi A, Rost BR, Wiegert JS, Yizhar O. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron 2021;109:1621-1635.e8. [PMID: 33979634 DOI: 10.1016/j.neuron.2021.03.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 32.0] [Reference Citation Analysis]
Number Citing Articles
1 Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan Z, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. Nat Rev Methods Primers 2022;2:55. [DOI: 10.1038/s43586-022-00136-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Girven KS, Mangieri L, Bruchas MR. Emerging approaches for decoding neuropeptide transmission. Trends in Neurosciences 2022;45:899-912. [DOI: 10.1016/j.tins.2022.09.005] [Reference Citation Analysis]
3 Li L, Durand-de Cuttoli R, Aubry AV, Burnett CJ, Cathomas F, Parise LF, Chan KL, Morel C, Yuan C, Shimo Y, Lin H, Wang J, Russo SJ. Social trauma engages lateral septum circuitry to occlude social reward. Nature 2022. [DOI: 10.1038/s41586-022-05484-5] [Reference Citation Analysis]
4 Takahashi TM, Hirano A, Kanda T, Saito VM, Ashitomi H, Tanaka KZ, Yokoshiki Y, Masuda K, Yanagisawa M, Vogt KE, Tokuda T, Sakurai T. Optogenetic induction of hibernation-like state with modified human Opsin4 in mice. Cell Reports Methods 2022. [DOI: 10.1016/j.crmeth.2022.100336] [Reference Citation Analysis]
5 O'neill PR, Copits BA, Bruchas MR. Optical Approaches for Dissecting GPCR Signaling. GPCRs as Therapeutic Targets 2022. [DOI: 10.1002/9781119564782.ch25] [Reference Citation Analysis]
6 Pardi MB, Schroeder A, Letzkus JJ. Probing top-down information in neocortical layer 1. Trends in Neurosciences 2022. [DOI: 10.1016/j.tins.2022.11.001] [Reference Citation Analysis]
7 Geng Y, Li Z, Zhu J, Du C, Yuan F, Cai X, Ali A, Yang J, Tang C, Cong Z, Ma C. Advances in Optogenetics Applications for Central Nervous System Injuries. Journal of Neurotrauma 2022. [DOI: 10.1089/neu.2022.0290] [Reference Citation Analysis]
8 Fernandez-Ruiz A, Oliva A, Chang H. High-resolution optogenetics in space and time. Trends Neurosci 2022:S0166-2236(22)00181-3. [PMID: 36192264 DOI: 10.1016/j.tins.2022.09.002] [Reference Citation Analysis]
9 Rost BR, Wietek J, Yizhar O, Schmitz D. Optogenetics at the presynapse. Nat Neurosci 2022. [PMID: 35835882 DOI: 10.1038/s41593-022-01113-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Rodriguez-Rozada S, Wietek J, Tenedini F, Sauter K, Dhiman N, Hegemann P, Soba P, Wiegert JS. Aion is a bistable anion-conducting channelrhodopsin that provides temporally extended and reversible neuronal silencing. Commun Biol 2022;5:687. [PMID: 35810216 DOI: 10.1038/s42003-022-03636-x] [Reference Citation Analysis]
11 Vierock J, Peter E, Grimm C, Rozenberg A, Castro Scalise AG, Augustin S, Tanese D, Forget BC, Emiliani V, Béjà O, Hegemann P. WiChR, a highly potassium selective channelrhodopsin for low-light two-photon neuronal inhibition.. [DOI: 10.1101/2022.07.02.498568] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Dai R, Yu T, Weng D, Li H, Cui Y, Wu Z, Guo Q, Zou H, Wu W, Gao X, Qi Z, Ren Y, Wang S, Li Y, Luo M. A neuropsin-based optogenetic tool for precise control of Gq signaling. Sci China Life Sci 2022;65:1271-1284. [DOI: 10.1007/s11427-022-2122-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022;10:879609. [DOI: 10.3389/fchem.2022.879609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Ren C, Peng K, Yang R, Liu W, Liu C, Komiyama T. Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning. Neuron 2022:S0896-6273(22)00408-1. [PMID: 35584693 DOI: 10.1016/j.neuron.2022.04.031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Tichy AM, So WL, Gerrard EJ, Janovjak H. Structure-guided optimization of light-activated chimeric G-protein-coupled receptors. Structure 2022:S0969-2126(22)00139-3. [PMID: 35588733 DOI: 10.1016/j.str.2022.04.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat Rev Neurosci. [DOI: 10.1038/s41583-022-00561-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Rodriguez-rozada S, Wietek J, Tenedini F, Sauter K, Hegemann P, Soba P, Wiegert JS. Temporally extended and reversible neuronal silencing with Aion.. [DOI: 10.1101/2022.02.25.481932] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Wolff SBE, Ko R, Ölveczky BP. Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. Sci Adv 2022;8:eabk0231. [PMID: 35213216 DOI: 10.1126/sciadv.abk0231] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Dai R, Yu T, Weng D, Li H, Cui Y, Wu Z, Guo Q, Zou H, Wu W, Gao X, Qi Z, Ren Y, Wang S, Li Y, Luo M. A Neuropsin-based Optogenetic Tool for Precise Control of Gq signaling.. [DOI: 10.1101/2022.02.22.481462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Koyanagi M, Shen B, Nagata T, Sun L, Wada S, Kamimura S, Kage-nakadai E, Terakita A. High-performance GPCR optogenetics based on molecular properties of animal opsins, MosOpn3 and LamPP.. [DOI: 10.1101/2022.02.07.479375] [Reference Citation Analysis]
21 Sánchez-Bellot C, AlSubaie R, Mishchanchuk K, Wee RWS, MacAskill AF. Two opposing hippocampus to prefrontal cortex pathways for the control of approach and avoidance behaviour. Nat Commun 2022;13:339. [PMID: 35039510 DOI: 10.1038/s41467-022-27977-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Liu S, Ye M, Pao GM, Song SM, Jhang J, Jiang H, Kim JH, Kang SJ, Kim DI, Han S. Divergent brainstem opioidergic pathways that coordinate breathing with pain and emotions. Neuron 2021:S0896-6273(21)00990-9. [PMID: 34921781 DOI: 10.1016/j.neuron.2021.11.029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
23 Tichy A, So WL, Gerrard EJ, Janovjak H. Structure-guided optimization of light-activated chimeric G-protein coupled receptors.. [DOI: 10.1101/2021.12.13.472518] [Reference Citation Analysis]
24 Resulaj A. Projections of the Mouse Primary Visual Cortex. Front Neural Circuits 2021;15:751331. [PMID: 34867213 DOI: 10.3389/fncir.2021.751331] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Matsubara T, Yamashita T. Remote Optogenetics Using Up/Down-Conversion Phosphors. Front Mol Biosci 2021;8:771717. [PMID: 34805279 DOI: 10.3389/fmolb.2021.771717] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Xu X, Song L, Kringel R, Hanganu-Opatz IL. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice. Nat Commun 2021;12:6810. [PMID: 34815409 DOI: 10.1038/s41467-021-27114-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Nagata T, Inoue K. Rhodopsins at a glance. J Cell Sci 2021;134:jcs258989. [PMID: 34821363 DOI: 10.1242/jcs.258989] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
28 Walton F, Mcglynn E, Das R, Zhong H, Heidari H, Degenaar P. Magneto‐Optogenetic Deep‐Brain Multimodal Neurostimulation. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202100082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Kostka JK, Hanganu-opatz IL. Olfactory-driven beta band entrainment of limbic circuitry during neonatal development.. [DOI: 10.1101/2021.10.04.463041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Gong L, Liu X, Wu J, He M. Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2021. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Reference Citation Analysis]
31 Hwang EJ, Sato TR, Sato TK. A Canonical Scheme of Bottom-Up and Top-Down Information Flows in the Frontoparietal Network. Front Neural Circuits 2021;15:691314. [PMID: 34475815 DOI: 10.3389/fncir.2021.691314] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Vierock J, Rodriguez-Rozada S, Dieter A, Pieper F, Sims R, Tenedini F, Bergs ACF, Bendifallah I, Zhou F, Zeitzschel N, Ahlbeck J, Augustin S, Sauter K, Papagiakoumou E, Gottschalk A, Soba P, Emiliani V, Engel AK, Hegemann P, Wiegert JS. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons. Nat Commun 2021;12:4527. [PMID: 34312384 DOI: 10.1038/s41467-021-24759-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 24.0] [Reference Citation Analysis]
33 Nagappan S, Franks KM. Parallel processing by distinct classes of principal neurons in the olfactory cortex.. [DOI: 10.1101/2021.07.13.452206] [Reference Citation Analysis]
34 Vogt N. Optogenetic silencing at synaptic terminals. Nat Methods 2021;18:712. [PMID: 34239100 DOI: 10.1038/s41592-021-01212-5] [Reference Citation Analysis]
35 He XJ, Banghart MR. It's lights out for presynaptic terminals. Neuron 2021;109:1755-7. [PMID: 34081915 DOI: 10.1016/j.neuron.2021.05.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]