BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang C, Kaye JA, Cai Z, Wang Y, Prescott SL, Liberles SD. Area Postrema Cell Types that Mediate Nausea-Associated Behaviors. Neuron 2021;109:461-472.e5. [PMID: 33278342 DOI: 10.1016/j.neuron.2020.11.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Xia Y, Cui K, Alonso A, Lowenstein ED, Hernandez-miranda LR. Transcription factors regulating the specification of brainstem respiratory neurons. Front Mol Neurosci 2022;15. [DOI: 10.3389/fnmol.2022.1072475] [Reference Citation Analysis]
2 Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.175379] [Reference Citation Analysis]
3 Xie Z, Zhang X, Zhao M, Huo L, Huang M, Li D, Zhang S, Cheng X, Gu H, Zhang C, Zhan C, Wang F, Shang C, Cao P. The gut-to-brain axis for toxin-induced defensive responses. Cell 2022;185:4298-4316.e21. [DOI: 10.1016/j.cell.2022.10.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Chen JY, Palmiter RD. A gut-retching discovery. Cell 2022;185:4249-4251. [DOI: 10.1016/j.cell.2022.10.015] [Reference Citation Analysis]
5 Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022;16:991779. [DOI: 10.3389/fnins.2022.991779] [Reference Citation Analysis]
6 Bishnoi IR, Cloutier CJ, Tyson CD, Matic VM, Kavaliers M, Ossenkopp KP. Infection, Learning, and Memory: Focus on Immune Activation and Aversive Conditioning. Neurosci Biobehav Rev 2022;:104898. [PMID: 36183862 DOI: 10.1016/j.neubiorev.2022.104898] [Reference Citation Analysis]
7 Ilanges A, Shiao R, Shaked J, Luo JD, Yu X, Friedman JM. Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour. Nature 2022. [PMID: 36071158 DOI: 10.1038/s41586-022-05161-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Stone BT, Lin J, Mahmood A, Sanford AJ, Katz DB. LiCl-induced sickness modulates rat gustatory cortical responses. PLoS Biol 2022;20:e3001537. [DOI: 10.1371/journal.pbio.3001537] [Reference Citation Analysis]
9 Pauli JL, Chen JY, Basiri ML, Park S, Carter ME, Sanz E, Mcknight GS, Stuber GD, Palmiter RD. Molecular and Anatomical Characterization of Parabrachial Neurons and Their Axonal Projections.. [DOI: 10.1101/2022.07.13.499944] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Zhang T, Perkins MH, Chang H, Han W, de Araujo IE. An inter-organ neural circuit for appetite suppression. Cell 2022:S0092-8674(22)00591-8. [PMID: 35662413 DOI: 10.1016/j.cell.2022.05.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
11 Cheng W, Gordian D, Ludwig MQ, Pers TH, Seeley RJ, Myers MG Jr. Hindbrain circuits in the control of eating behaviour and energy balance. Nat Metab 2022;4:826-35. [PMID: 35879458 DOI: 10.1038/s42255-022-00606-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Zhang J, Li T, Wu Q, Qin Z, Wei B, Wu R, Guo X, Xiao H, Wu W. Emetic Response to T-2 Toxin Correspond to Secretion of Glucagon-like Peptide-17–36 Amide and Glucose-Dependent Insulinotropic Polypeptide. Toxins 2022;14:389. [DOI: 10.3390/toxins14060389] [Reference Citation Analysis]
13 D'agostino G, Luckman SM. Brainstem peptides and peptidergic neurons in the regulation of appetite. Current Opinion in Endocrine and Metabolic Research 2022;24:100339. [DOI: 10.1016/j.coemr.2022.100339] [Reference Citation Analysis]
14 Ghidewon M, Wald HS, McKnight AD, De Jonghe BC, Breen DM, Alhadeff AL, Borner T, Grill HJ. Growth differentiation factor 15 (GDF15) and semaglutide inhibit food intake and body weight through largely distinct, additive mechanisms. Diabetes Obes Metab 2022;24:1010-20. [PMID: 35129264 DOI: 10.1111/dom.14663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts. J Physiol 2022. [PMID: 35648134 DOI: 10.1113/JP282996] [Reference Citation Analysis]
16 Konno D, Sugino S, Shibata TF, Misawa K, Imamura-Kawasawa Y, Suzuki J, Kido K, Nagasaki M, Yamauchi M. Antiemetic effects of baclofen in a shrew model of postoperative nausea and vomiting: Whole-transcriptome analysis in the nucleus of the solitary tract. CNS Neurosci Ther 2022;28:922-31. [PMID: 35238164 DOI: 10.1111/cns.13823] [Reference Citation Analysis]
17 Vagena E, Crneta J, Engström P, He L, Yulyaningsih E, Korpel NL, Cheang RT, Bachor TP, Huang A, Michel G, Attal K, Berrios DI, Valdearcos M, Koliwad SK, Olson DP, Yi CX, Xu AW. ASB4 modulates central melanocortinergic neurons and calcitonin signaling to control satiety and glucose homeostasis. Sci Signal 2022;15:eabj8204. [PMID: 35536884 DOI: 10.1126/scisignal.abj8204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Sun L, Pan X, Li H, Zhang X, Zhao X, Zhang L, Zhang L. Odor-Induced Vomiting Is Combinatorially Triggered by Palp Olfactory Receptor Neurons That Project to the Lobus Glomerulatus in Locust Brain. Front Physiol 2022;13:855522. [PMID: 35514359 DOI: 10.3389/fphys.2022.855522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Smith C, Patterson-cross R, Woodward O, Lewis J, Chiarugi D, Merkle F, Gribble F, Reimann F, Adriaenssens A. A comparative transcriptomic analysis of Glucagon-like peptide-1 receptor- and glucose-dependent insulinotropic polypeptide-expressing cells in the hypothalamus. Appetite 2022. [DOI: 10.1016/j.appet.2022.106022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Hayashi M, Kaye JA, Douglas ER, Joshi NR, Gribble F, Reimann F, Liberles SD. Enteroendocrine cell lineages that differentially control feeding and gut motility.. [DOI: 10.1101/2022.03.18.484842] [Reference Citation Analysis]
21 Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts.. [DOI: 10.1101/2022.02.03.478953] [Reference Citation Analysis]
22 Lutz TA. Creating the amylin story. Appetite 2022. [DOI: 10.1016/j.appet.2022.105965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Tadross JA, Lam BY, Yeo GS. New molecular techniques for exploring neuronal appetite pathways. Current Opinion in Endocrine and Metabolic Research 2022;22:100309. [DOI: 10.1016/j.coemr.2021.100309] [Reference Citation Analysis]
24 Liu C, Zhao G, Qiao D, Wang L, He Y, Zhao M, Fan Y, Jiang E. Emerging Progress in Nausea and Vomiting of Pregnancy and Hyperemesis Gravidarum: Challenges and Opportunities. Front Med (Lausanne) 2021;8:809270. [PMID: 35083256 DOI: 10.3389/fmed.2021.809270] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
25 Troadec JD, Gaigé S, Barbot M, Lebrun B, Barbouche R, Abysique A. Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. Int J Mol Sci 2022;23:960. [PMID: 35055143 DOI: 10.3390/ijms23020960] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Stone BT, Lin J, Mahmood A, Sanford AJ, Katz DB. LiCl-induced sickness modulates spontaneous activity and response dynamics in rat gustatory cortex.. [DOI: 10.1101/2022.01.13.476147] [Reference Citation Analysis]
27 Prescott SL, Liberles SD. Internal senses of the vagus nerve. Neuron 2022:S0896-6273(21)01037-0. [PMID: 35051375 DOI: 10.1016/j.neuron.2021.12.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
28 Reiner BC, Crist RC, Borner T, Doyle RP, Hayes MR, De Jonghe BC. Single nuclei RNA sequencing of the rat AP and NTS following GDF15 treatment. Mol Metab 2021;:101422. [PMID: 34942400 DOI: 10.1016/j.molmet.2021.101422] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Wean JB, Smith BN. Fibroblast Growth Factor 19 Increases the Excitability of Pre-Motor Glutamatergic Dorsal Vagal Complex Neurons From Hyperglycemic Mice. Front Endocrinol (Lausanne) 2021;12:765359. [PMID: 34858337 DOI: 10.3389/fendo.2021.765359] [Reference Citation Analysis]
30 Costa A, Ai M, Nunn N, Culotta I, Hunter J, Boudjadja MB, Valencia-Torres L, Aviello G, Hodson DJ, Snider BM, Coskun T, Emmerson PJ, Luckman SM, D'Agostino G. Anorectic and aversive effects of GLP-1 receptor agonism are mediated by brainstem cholecystokinin neurons, and modulated by GIP receptor activation. Mol Metab 2021;55:101407. [PMID: 34844019 DOI: 10.1016/j.molmet.2021.101407] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
31 Johann K, Kleinert M, Klaus S. The Role of GDF15 as a Myomitokine. Cells 2021;10:2990. [PMID: 34831213 DOI: 10.3390/cells10112990] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
32 Gil CI, Coull BM, Jonas W, Lippert R, Ost M, Klaus S. Mitochondrial stress-induced GDF15-GFRAL axis promotes anxiety-like behavior and CRH-dependent anorexia.. [DOI: 10.1101/2021.09.22.461199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Trapp S, Brierley DI. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment. Br J Pharmacol 2021. [PMID: 34323288 DOI: 10.1111/bph.15638] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
34 Borgmann D, Ciglieri E, Biglari N, Brandt C, Cremer AL, Backes H, Tittgemeyer M, Wunderlich FT, Brüning JC, Fenselau H. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab 2021;33:1466-1482.e7. [PMID: 34043943 DOI: 10.1016/j.cmet.2021.05.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 34.0] [Reference Citation Analysis]
35 Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021. [PMID: 33990944 DOI: 10.1111/bph.15535] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
36 Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2021;:1-38. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021;9:662916. [PMID: 33937265 DOI: 10.3389/fcell.2021.662916] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
38 Han W, de Araujo IE. Nausea and the Brain: The Chemoreceptor Trigger Zone Enters the Molecular Age. Neuron 2021;109:391-3. [PMID: 33539771 DOI: 10.1016/j.neuron.2021.01.004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metab 2021;46:101175. [PMID: 33548501 DOI: 10.1016/j.molmet.2021.101175] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
40 Gautron L. The Phantom Satiation Hypothesis of Bariatric Surgery. Front Neurosci 2021;15:626085. [PMID: 33597843 DOI: 10.3389/fnins.2021.626085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]