BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shan Y, Abel JH, Li Y, Izumo M, Cox KH, Jeong B, Yoo SH, Olson DP, Doyle FJ 3rd, Takahashi JS. Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony. Neuron 2020;108:164-179.e7. [PMID: 32768389 DOI: 10.1016/j.neuron.2020.07.012] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Morimoto T, Yoshikawa T, Nagano M, Shigeyoshi Y. Regionality of short and long period oscillators in the suprachiasmatic nucleus and their manner of synchronization. PLoS One 2022;17:e0276372. [PMID: 36256675 DOI: 10.1371/journal.pone.0276372] [Reference Citation Analysis]
2 Czeisler MÉ, Shan Y, Schalek R, Berger DR, Suissa-peleg A, Takahashi JS, Lichtman JW. Extensive Soma-Soma Plate-Like Contact Sites (Ephapses) Connect Suprachiasmatic Nucleus Neurons.. [DOI: 10.1101/2022.09.09.507192] [Reference Citation Analysis]
3 Tonsfeldt KJ, Cui LJ, Lee J, Walbeek TJ, Brusman LE, Jin Y, Mieda M, Gorman MR, Mellon PL. Female fertility does not require Bmal1 in suprachiasmatic nucleus neurons expressing arginine vasopressin, vasoactive intestinal peptide, or neuromedin-S. Front Endocrinol 2022;13:956169. [DOI: 10.3389/fendo.2022.956169] [Reference Citation Analysis]
4 Tsuno Y, Peng Y, Horike S, Yamagata K, Sugiyama M, Nakamura TJ, Daikoku T, Maejima T, Mieda M. AVP neurons act as the primary circadian pacesetter cells in vivo.. [DOI: 10.1101/2022.08.04.502742] [Reference Citation Analysis]
5 Kauffman AS. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Front Neurosci 2022;16:953252. [DOI: 10.3389/fnins.2022.953252] [Reference Citation Analysis]
6 Zhai Q, Zeng Y, Gu Y, Li Z, Zhang T, Yuan B, Wang T, Yan J, Qin H, Yang L, Chen X, Vidal-Puig A, Xu Y. Time-restricted feeding entrains long-term behavioral changes through the IGF2-KCC2 pathway. iScience 2022;25:104267. [PMID: 35521538 DOI: 10.1016/j.isci.2022.104267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhang Y, Cheng L, Liu Y, Zhang R, Wu Z, Cheng K, Zhang X. Omics Analyses of Intestinal Microbiota and Hypothalamus Clock Genes in Circadian Disturbance Model Mice Fed with Green Tea Polyphenols. J Agric Food Chem 2022. [PMID: 35112849 DOI: 10.1021/acs.jafc.1c07594] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Tu H, Li S, Xu Y, Zhang Y, Jian X, Song G, Wu M, Song Z, Hu H, Li P, Liang L, Yuan J, Shen X, Li J, Han Q, Wang K, Zhang T, Zhou T, Li A, Zhang X, Li H. Rhythmic Cilium in SCN Neuron is a Gatekeeper for the Intrinsic Circadian Clock.. [DOI: 10.1101/2022.01.26.477948] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Li W, Wang Z, Cao J, Dong Y, Chen Y. Role of Sleep Restriction in Daily Rhythms of Expression of Hypothalamic Core Clock Genes in Mice. CIMB 2022;44:609-25. [DOI: 10.3390/cimb44020042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Smith CB, van der Vinne V, McCartney E, Stowie AC, Leise TL, Martin-Burgos B, Molyneux PC, Garbutt LA, Brodsky MH, Davidson AJ, Harrington ME, Dallmann R, Weaver DR. Cell-Type-Specific Circadian Bioluminescence Rhythms in Dbp Reporter Mice. J Biol Rhythms 2022;:7487304211069452. [PMID: 35023384 DOI: 10.1177/07487304211069452] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Tonsfeldt KJ, Welsh DK. Long-Term Imaging and Electrophysiology of Single Suprachiasmatic Nucleus Neurons. Circadian Clocks 2022. [DOI: 10.1007/978-1-0716-2577-4_5] [Reference Citation Analysis]
12 Bittman EL. Anatomical Methods to Study the Suprachiasmatic Nucleus. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2249-0_13] [Reference Citation Analysis]
13 Brown LS, Abel JH, Klerman EB, Doyle FJ. Mathematical Modeling of Circadian Rhythms. Circadian Clocks 2022. [DOI: 10.1007/978-1-0716-2577-4_19] [Reference Citation Analysis]
14 van der Veen DR, Gerkema MP, van der Vinne V. Biological Rhythm Measurements in Rodents. Circadian Clocks 2022. [DOI: 10.1007/978-1-0716-2577-4_2] [Reference Citation Analysis]
15 Juarez-alvarez O, Franci A. In-phase oscillations from the cooperation of cellular and network positive feedback in synaptically-coupled oscillators. 2021 60th IEEE Conference on Decision and Control (CDC) 2021. [DOI: 10.1109/cdc45484.2021.9683708] [Reference Citation Analysis]
16 Stowie A, Qiao Z, Do Carmo Buonfiglio D, Beckner DM, Ehlen JC, Benveniste M, Davidson AJ. Arginine-Vasopressin Expressing Neurons in the Murine Suprachiasmatic Nucleus Exhibit a Circadian Rhythm in Network Coherence In Vivo.. [DOI: 10.1101/2021.12.07.471437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Moreira Teixeira L, Mezzanotte L. New bioimaging avenues for organs‐on‐chips by integration of bioluminescence. VIEW 2021;2:20200177. [DOI: 10.1002/viw.20200177] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Yamaguchi Y, Murai I, Goto K, Doi S, Zhou H, Setsu G, Shimatani H, Okamura H, Miyake T, Doi M. Gpr19 is a circadian clock-controlled orphan GPCR with a role in modulating free-running period and light resetting capacity of the circadian clock. Sci Rep 2021;11:22406. [PMID: 34789778 DOI: 10.1038/s41598-021-01764-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. Front Netw Physiol 2021;1. [DOI: 10.3389/fnetp.2021.732243] [Reference Citation Analysis]
20 Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. Front Netw Physiol 2021;1:732243. [PMID: 35156088] [Reference Citation Analysis]
21 Jones JR, Chaturvedi S, Granados-Fuentes D, Herzog ED. Circadian neurons in the paraventricular nucleus entrain and sustain daily rhythms in glucocorticoids. Nat Commun 2021;12:5763. [PMID: 34599158 DOI: 10.1038/s41467-021-25959-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
22 Li MD, Xin H, Yuan Y, Yang X, Li H, Tian D, Zhang H, Zhang Z, Han TL, Chen Q, Duan G, Ju D, Chen K, Deng F, He W; Biological Rhythm Academic Consortium in Chongqing (BRACQ). Circadian Clock-Controlled Checkpoints in the Pathogenesis of Complex Disease. Front Genet 2021;12:721231. [PMID: 34557221 DOI: 10.3389/fgene.2021.721231] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Yao Y, Taub AB, LeSauter J, Silver R. Identification of the suprachiasmatic nucleus venous portal system in the mammalian brain. Nat Commun 2021;12:5643. [PMID: 34561434 DOI: 10.1038/s41467-021-25793-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Duan J, Greenberg EN, Karri SS, Andersen B. The circadian clock and diseases of the skin. FEBS Lett 2021;595:2413-36. [PMID: 34535902 DOI: 10.1002/1873-3468.14192] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
25 Tackenberg MC, Hughey JJ, McMahon DG. Optogenetic stimulation of VIPergic SCN neurons induces photoperiodic-like changes in the mammalian circadian clock. Eur J Neurosci 2021;54:7063-71. [PMID: 34486778 DOI: 10.1111/ejn.15442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Hughes ATL, Samuels RE, Baño-Otálora B, Belle MDC, Wegner S, Guilding C, Northeast RC, Loudon ASI, Gigg J, Piggins HD. Timed daily exercise remodels circadian rhythms in mice. Commun Biol 2021;4:761. [PMID: 34145388 DOI: 10.1038/s42003-021-02239-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
27 Sanchez REA, Kalume F, de la Iglesia HO. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin Cell Dev Biol 2021:S1084-9521(21)00149-X. [PMID: 34092510 DOI: 10.1016/j.semcdb.2021.05.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
28 Taub A, Carbajal Y, Rimu K, Holt R, Yao Y, Hernandez AL, LeSauter J, Silver R. Arginine Vasopressin-Containing Neurons of the Suprachiasmatic Nucleus Project to CSF. eNeuro 2021;8:ENEURO. [PMID: 33472866 DOI: 10.1523/ENEURO.0363-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ono D, Honma KI, Honma S. Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock. Front Neurosci 2021;15:650154. [PMID: 33935635 DOI: 10.3389/fnins.2021.650154] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
30 Smith CB, van der Vinne V, Mccartney E, Stowie AC, Leise TL, Martin-burgos B, Molyneux PC, Garbutt LA, Brodsky MH, Davidson AJ, Harrington ME, Dallmann R, Weaver DR. Cell-type specific circadian bioluminescence rhythms in Dbp reporter mice.. [DOI: 10.1101/2021.04.04.438413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhai Q, Zeng Y, Gu Y, Zhang T, Yuan B, Wang T, Yan J, Qin H, Yang L, Chen X, Vidal-puig A, Xu Y. Time-restricted feeding near dawn entrains long-term behavioral changes through the suprachiasmatic nucleus.. [DOI: 10.1101/2021.02.18.431900] [Reference Citation Analysis]
32 Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021;15:635304. [PMID: 33643013 DOI: 10.3389/fnhum.2021.635304] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
33 Fernandez FX, Kaladchibachi S, Negelspach DC. Resilience in the suprachiasmatic nucleus: Implications for aging and Alzheimer's disease. Exp Gerontol 2021;147:111258. [PMID: 33516909 DOI: 10.1016/j.exger.2021.111258] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
34 Yao Y, Taub A, Lesauter J, Silver R. The brain clock portal system: SCN-OVLT.. [DOI: 10.1101/2021.01.24.427962] [Reference Citation Analysis]
35 Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021;157:73-94. [PMID: 33370457 DOI: 10.1111/jnc.15286] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
36 Tackenberg MC, Hughey JJ, Mcmahon DG. Optogenetic stimulation of VIPergic SCN neurons induces photoperiodic changes in the mammalian circadian clock.. [DOI: 10.1101/2021.01.04.425287] [Reference Citation Analysis]
37 Hamnett R, Chesham JE, Maywood ES, Hastings MH. The Cell-Autonomous Clock of VIP Receptor VPAC2 Cells Regulates Period and Coherence of Circadian Behavior. J Neurosci 2021;41:502-12. [PMID: 33234609 DOI: 10.1523/JNEUROSCI.2015-20.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
38 Joye DAM, Evans JA. Marking Time: Colorful New Insights into Master Clock Circuits. Neuron 2020;108:2-5. [PMID: 33058763 DOI: 10.1016/j.neuron.2020.09.007] [Reference Citation Analysis]